Badano zależność czasu wytwarzania wyrobu przez robotnika (godz.), od czasu szkoleń które przeszadł (tyg.) i stażu pracy (lata). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y |
X1 |
X2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Czas wytwarzania |
Czas szkolenia |
Staż pracy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
0 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
1 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
1 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
2 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
2 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b=(X'X)^-1X'Y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
0 |
0 |
1 |
|
13 |
11 |
10 |
8 |
7 |
8 |
|
|
|
|
|
|
|
|
|
|
11 |
0 |
1 |
1 |
|
0 |
0 |
1 |
1 |
2 |
2 |
|
|
|
|
|
|
|
|
|
|
10 |
1 |
0 |
1 |
|
0 |
1 |
0 |
2 |
1 |
0 |
|
|
|
|
|
|
|
|
|
|
8 |
1 |
2 |
1 |
|
1 |
1 |
1 |
1 |
1 |
1 |
|
|
|
|
|
|
|
|
|
|
7 |
2 |
1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
2 |
0 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
macierz cross |
|
|
|
|
|
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y |
X1 |
X2 |
1 |
|
|
|
|
|
|
|
Analiza regresji |
|
|
|
|
|
|
|
|
Y |
567 |
48 |
34 |
57 |
|
X'X= |
10 |
4 |
6 |
|
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
x1 |
48 |
10 |
4 |
6 |
|
|
4 |
6 |
4 |
|
|
|
|
|
|
|
|
|
|
|
x2 |
34 |
4 |
6 |
4 |
|
|
6 |
4 |
6 |
|
|
Statystyki regresji |
|
|
|
|
|
|
|
1 |
57 |
6 |
4 |
6 |
|
|
|
|
|
|
|
Wielokrotność R |
0,991137195940335 |
|
|
|
|
|
|
|
|
|
|
|
|
|
(x'x)^-1= |
0,25 |
0,00 |
-0,25 |
|
|
R kwadrat |
0,982352941176471 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,00 |
0,30 |
-0,20 |
|
|
Dopasowany R kwadrat |
0,970588235294118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-0,25 |
-0,20 |
0,55 |
|
|
Błąd standardowy |
0,387298334620742 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacje |
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Regresja |
2 |
25,05 |
12,525 |
83,4999999999999 |
0,002344274697024 |
|
|
|
|
b= |
-2,25 |
|
|
|
|
|
|
|
|
|
Resztkowy |
3 |
0,450000000000001 |
0,15 |
|
|
|
|
|
|
|
-1,2 |
|
|
|
|
|
|
|
|
|
Razem |
5 |
25,5 |
|
|
|
|
|
|
|
|
12,55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
Dolne 99,0% |
Górne 99,0% |
model hipotetyczny |
|
Y=B1*X1 + B2*X2 + B0 |
|
|
|
|
|
|
|
|
|
Przecięcie |
12,55 |
0,287228132326902 |
43,6934916448801 |
2,63877374954813E-05 |
11,6359110339894 |
13,4640889660106 |
10,8723442140534 |
14,2276557859466 |
|
|
|
|
|
|
|
|
|
|
|
|
Czas szkolenia |
-2,25 |
0,193649167310371 |
-11,6189500386222 |
0,001369331236764 |
-2,86627865516349 |
-1,63372134483651 |
-3,38107530014585 |
-1,11892469985415 |
model ekonometryczny |
|
Y=b1*X1 + b2*X2 +b0 |
|
|
|
|
|
|
|
|
|
Staż pracy |
-1,2 |
0,212132034355964 |
-5,65685424949238 |
0,010937657009751 |
-1,87509944228398 |
-0,524900557716019 |
-2,43903091225361 |
0,039030912253613 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
m. ekonometryczny po oszacowaniu |
|
|
|
Y=-2,25*X1 -1,2*X2 +12,55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
INTERPRETACJE: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Jeżeli czas szkolenia wzrośnie o 1 tydzień to czas wytwarania wyrobu spadnie średnio o 2,25 godziny |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Jeżeli staż pracy wzrośnie o 1 rok to czas wytwarania wyrobu spadnie średnio o 1,2 godziny |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PROGNOZY I BŁĘDY PROGNOZ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Posługując się odpowiednim wzorem i formułami zapisz macierz wariancji i kowarianacji ocen parametrów |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
odchylenie standardowe składnika losowego wynosi: |
|
|
|
|
0,387298334620742 |
|
(godziny) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D^2(b)=s^2(X'X)^-1 |
|
0,04 |
0,00 |
-0,04 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,00 |
0,05 |
-0,03 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-0,04 |
-0,03 |
0,08 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,25 |
0,00 |
-0,25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(X'X)^-1= |
0,00 |
0,30 |
-0,20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-0,25 |
-0,20 |
0,55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Jaki jest przewidywany czas wytwarzania wyrobu przez pracownika o 1.5 rocznym stażu, który uczestniczył w 2 tygodniowym kursie? |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X*= |
1,5 |
|
X*'= |
2 |
1,5 |
1 |
|
Y*= |
6,25 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd prognozy wyznaczany w sposób macierzowy. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X*'(X'X)^-1= |
0,25 |
0,25 |
-0,25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
m* (v)= |
0,493710441453288 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Przedział ufności dla prognozy (a=0.05) |
|
|
|
4,678793029717 |
7,82120697028301 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t kryt |
3,18244630528371 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Postawiono hipotezę, że liczba zarejestrowanych samochodów zależy w sposób liniowy od poniższych zmiennych: |
|
|
|
|
|
|
|
|
Y – liczba zarejestrowanych samochodów (w tys. szt.) |
|
|
|
|
|
|
|
|
X1 – liczba autobusów transportu publicznego (w tys. szt.) |
|
|
|
|
|
|
|
|
X2 – przewóz pasażerów transportem samochodowym (w tys. os.) |
|
|
|
|
|
|
|
|
X3 – długość linii kolejowych normalnotorowych (w km) |
|
|
|
|
|
|
|
|
X4 – liczba mieszkań (w tys.) |
|
|
|
|
|
|
|
|
X5 – przemysłowe zanieczyszczenia gazowe (w tys. ton). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Rok |
Y |
X1 |
X2 |
X3 |
X4 |
X5 |
|
|
1983 |
1078 |
52 |
2237288 |
26702 |
8839 |
3040 |
|
|
1984 |
1290 |
57 |
2309991 |
26734 |
9018 |
3347 |
|
|
1985 |
1547 |
60 |
2345765 |
26832 |
9202 |
3440 |
|
|
1986 |
1835 |
62 |
2353685 |
26835 |
9402 |
4477 |
|
|
1987 |
2117 |
65 |
2303971 |
27271 |
9652 |
4830 |
|
|
1988 |
2383 |
66 |
2379250 |
27185 |
9996 |
5135 |
|
|
1989 |
2634 |
68 |
2339740 |
27182 |
10334 |
4899 |
|
|
1990 |
2882 |
74 |
2320950 |
27158 |
10415 |
4761 |
|
|
1991 |
3179 |
77 |
2427230 |
27139 |
10512 |
4967 |
|
|
1992 |
3415 |
79 |
2438140 |
27115 |
10692 |
4950 |
|
|
1993 |
3671 |
83 |
2434420 |
27095 |
10868 |
4932 |
|
|
1994 |
3962 |
86 |
2457850 |
26848 |
11074 |
5325 |
|
|
1995 |
4232 |
87 |
2487210 |
26637 |
11205 |
5399 |
|
|
1996 |
4519 |
90 |
2503760 |
26545 |
10925 |
5193 |
|
|
1997 |
4846 |
91 |
2600000 |
26644 |
11058 |
5113 |
|
|
1997 |
4846 |
91 |
2600000 |
26644 |
11058 |
5113 |
|
|
1998 |
5240 |
92 |
2064240 |
26228 |
11180 |
4115 |
|
|
1999 |
6112 |
87 |
1709440 |
25848 |
11310 |
3552 |
|
|
2000 |
6505 |
86 |
1513070 |
25254 |
11437 |
3155 |
|
|
2001 |
6771 |
86 |
1380760 |
24926 |
11524 |
3001 |
|
|
2002 |
7153 |
87 |
1215323 |
24313 |
11630 |
2941 |
|
|
Wartości spodziewane 2003 |
|
99 |
968612,4 |
23475 |
12000 |
2487 |
|
|
|
|
|
|
|
|
|
|
|
Wyznacz KMNK parametry modelu. Znajdź model końcowy. Postaw prognozę na rok 2003 i oceń jej dopuszczalność. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Statystyki regresji |
|
|
|
|
|
|
|
Wielokrotność R |
0,995062972444586 |
|
|
|
|
|
|
|
R kwadrat |
0,990150319130254 |
|
|
|
|
|
|
|
Dopasowany R kwadrat |
0,986867092173672 |
|
|
|
|
|
|
|
Błąd standardowy |
211,239972833064 |
|
|
|
|
|
|
|
Obserwacje |
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
Regresja |
5 |
67285647,6795909 |
13457129,5359182 |
301,578395957457 |
1,71361309469248E-14 |
|
|
|
Resztkowy |
15 |
669334,891837704 |
44622,3261225136 |
|
|
|
|
|
Razem |
20 |
67954982,5714286 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
Dolne 95.0% |
Górne 95.0% |
Przecięcie |
9556,50510702415 |
5602,16067524759 |
1,70586058862044 |
0,108647903131017 |
-2384,2250586368 |
21497,2352726851 |
-2384,2250586368 |
21497,2352726851 |
X1 – liczba autobusów |
72,9689988141738 |
20,826594271876 |
3,50364528456341 |
0,003199508842963 |
28,578136629704 |
117,359860998644 |
28,578136629704 |
117,359860998644 |
X2 – przewóz transportem sam. |
-0,001143256995865 |
0,000533766742117 |
-2,14186629787247 |
0,049024377670159 |
-0,002280954575154 |
-5,55941657554297E-06 |
-0,002280954575154 |
-5,55941657554297E-06 |
X3 – długość linii kolejowych |
-0,519864258516484 |
0,21079244700816 |
-2,46623759956807 |
0,026191758713812 |
-0,969158000091039 |
-0,070570516941928 |
-0,969158000091039 |
-0,070570516941928 |
X4 – liczba mieszkań (w tys.) |
0,473788311476214 |
0,359462154887728 |
1,31804782515754 |
0,207262328844446 |
-0,292387606191783 |
1,23996422914421 |
-0,292387606191783 |
1,23996422914421 |
X5 – zanieczyszczenia |
-0,013898623174531 |
0,172369177170229 |
-0,08063287997717 |
0,936799917833302 |
-0,381295053369876 |
0,353497807020815 |
-0,381295053369876 |
0,353497807020815 |