Lata |
t |
Depozyty walutowe (x_2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1992 |
1 |
9,8 |
|
Model trendu liniowego: x_2 = b_0 + b_1*t + e |
|
|
|
|
|
|
|
Etap I |
|
|
|
|
|
|
|
1993 |
2 |
15,4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1994 |
3 |
20,9 |
|
I etap: |
diagram korelacyjny |
|
|
|
|
|
|
1995 |
4 |
19,7 |
|
|
|
|
|
|
|
|
1996 |
5 |
20,4 |
|
II etap: |
narzędzia - analiza danych - regresja
analiza regresji |
|
|
|
|
|
1997 |
6 |
25,2 |
|
|
|
|
|
|
|
|
1998 |
7 |
24,4 |
|
III etap: |
analiza statystyczna |
|
|
|
|
|
1999 |
8 |
30,3 |
|
|
- analiza wariancji (F) |
|
|
|
|
|
2000 |
9 |
student 17:
prognoza
31,6 |
|
|
- odchylenie standardowe składnika losowego (s_e) |
|
|
|
|
|
|
|
|
|
|
- współczynnik zmienności składnika losowego |
|
|
|
|
|
|
|
|
|
|
- współczynnik determinacji |
|
|
|
|
|
|
|
|
|
|
- błędy średnie szacunku parametrów strukturalnych |
|
|
|
|
|
|
|
|
|
|
- badanie istotności parametrów strukturalnych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
IV etap: |
interpretacja modelu |
|
|
|
|
|
|
|
|
|
V etap: |
sporządzenie prognozy dla 2000 roku |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Etap II |
|
|
|
|
|
|
|
|
|
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Statystyki regresji |
|
|
|
|
|
|
|
|
|
Statystyki regresji |
|
|
|
|
|
|
|
Wielokrotność R |
0,94 |
|
|
|
|
|
|
|
|
|
Wielokrotność R |
0,97639623190892 |
|
|
|
|
|
|
|
R kwadrat |
88,7% |
|
|
|
|
|
|
|
|
|
R kwadrat |
0,953349601685938 |
|
|
|
|
|
|
|
Dopasowany R kwadrat |
86,8% |
|
|
|
|
|
|
|
|
|
Dopasowany R kwadrat |
0,945574535300262 |
|
|
|
|
|
|
|
Błąd standardowy |
2,2722 |
|
|
|
|
|
|
|
|
|
Błąd standardowy |
10,0651193228956 |
|
|
|
|
|
|
|
Obserwacje |
8 |
|
|
|
|
|
|
|
|
|
Obserwacje |
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
Regresja |
1 |
243,12 |
243,12 |
47,09 |
0,00 |
|
|
|
|
|
Regresja |
1 |
12421,8402380952 |
12421,8402380952 |
122,61626517327 |
3,2297125199793E-05 |
|
|
|
Resztkowy |
6 |
30,98 |
5,16 |
|
|
|
|
|
|
|
Resztkowy |
6 |
607,839761904762 |
101,306626984127 |
|
|
|
|
|
Razem |
7 |
274,10 |
|
|
|
|
|
|
|
|
Razem |
7 |
13029,68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
Dolne 95,0% |
Górne 95,0% |
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
Dolne 95,0% |
Górne 95,0% |
Przecięcie |
9,94 |
1,77 |
5,61 |
0,001 |
5,603 |
14,268 |
5,603 |
14,268 |
|
|
Przecięcie |
-19,6892857142857 |
7,84267779235183 |
-2,51053099918075 |
0,05 |
-38,8796409831978 |
-0,498930445373631 |
-38,8796409831978 |
-0,498930445373631 |
t |
2,41 |
0,35 |
6,86 |
0,000 |
1,548 |
3,264 |
1,548 |
3,264 |
|
|
t |
17,1976190476191 |
1,55308162929098 |
11,0732228900745 |
0,00 |
13,3973624239465 |
20,9978756712916 |
13,3973624239465 |
20,9978756712916 |
Lata |
t |
Depozty złotowe (x_1) |
ln (x_1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1992 |
1 |
12,1 |
2,5 |
|
|
Model trendu wykładniczego: x_2 = b_0 * b_1^t * e |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1993 |
2 |
16,2 |
2,8 |
|
|
|
|
|
|
|
|
|
|
1994 |
3 |
22,0 |
3,1 |
|
|
I etap: |
diagram korelacyjny |
|
|
|
|
|
1995 |
4 |
39,6 |
3,7 |
|
|
|
|
|
|
|
|
|
1996 |
5 |
57,3 |
4,0 |
|
|
II etap: |
linearyzacja trendu wykładniczego |
|
|
|
|
|
1997 |
6 |
80,8 |
4,4 |
|
|
|
|
|
|
|
|
|
1998 |
7 |
109,5 |
4,7 |
|
|
II etap: |
narzędzia - analiza danych - regresja
analiza regresji |
|
|
|
|
|
1999 |
8 |
124,1 |
4,8 |
|
|
|
|
|
|
|
|
|
2000 |
9 |
213,7 |
- |
|
|
III etap: |
analiza statystyczna |
|
|
|
|
|
|
|
|
|
|
|
|
- analiza wariancji (F) |
|
|
|
|
|
|
|
|
|
|
|
|
- odchylenie standardowe składnika losowego (s_e) |
|
|
|
|
|
linearyzacja |
|
|
|
|
|
|
- współczynnik zmienności składnika losowego |
|
|
|
|
|
|
|
|
|
|
|
|
- współczynnik determinacji |
|
|
|
|
|
x_2 = y* |
|
|
|
|
|
|
- błędy średnie szacunku parametrów strukturalnych |
|
|
|
|
|
ln b_0 = b_0* |
|
|
|
|
|
|
- badanie istotności parametrów strukturalnych |
|
|
|
|
|
ln b_1 = b_1* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
IV etap: |
interpretacja modelu |
|
|
|
|
|
|
|
|
|
|
|
V etap: |
sporządzenie prognozy dla 2000 roku |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y= ln x_1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
III etap |
|
X= t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Statystyki regresji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wielokrotność R |
0,99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R kwadrat |
98,3% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dopasowany R kwadrat |
98,0% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd standardowy |
0,1241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacje |
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Regresja |
1 |
5,40 |
5,40 |
350,96 |
0,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Resztkowy |
6 |
0,09 |
0,02 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
7 |
5,49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
Dolne 95,0% |
Górne 95,0% |
|
|
|
|
|
|
|
|
|
|
|
|
|
Przecięcie |
2,14 |
0,10 |
22,11 |
0,000 |
1,900 |
2,374 |
1,900 |
2,374 |
|
|
|
|
|
|
|
|
|
|
|
|
|
t |
0,36 |
0,02 |
18,73 |
0,000 |
0,312 |
0,405 |
0,312 |
0,405 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b_0 = |
8,47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b_1 = |
1,43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lata |
PKB (y) |
Depozty złotowe (x_1) |
Depozyty walutowe (x_2) |
ln (x_1) |
ln (x_2) |
ln y |
|
|
|
|
|
|
|
|
|
|
|
1992 |
115 |
12,1 |
9,8 |
2,49 |
2,28 |
4,7 |
|
Model trendu potęgowego z dwoma zmiennymi objaśniającymi : y_t = b_0 * x_1^(b_1) * x_2^(b_2) * e |
|
|
|
|
|
|
|
|
|
1993 |
156 |
16,2 |
15,4 |
2,79 |
2,73 |
5,0 |
|
|
|
|
|
|
|
|
|
|
|
1994 |
210 |
22,0 |
20,9 |
3,09 |
3,04 |
5,3 |
|
I etap: |
diagram korelacyjny |
|
|
|
|
|
|
|
|
1995 |
306 |
39,6 |
19,7 |
3,68 |
2,98 |
5,7 |
|
|
|
|
|
|
|
|
|
|
|
1996 |
385 |
57,3 |
20,4 |
4,05 |
3,02 |
6,0 |
|
II etap: |
linearyzacja trendu potęgowego |
|
|
|
|
|
|
|
|
1997 |
469 |
80,8 |
25,2 |
4,39 |
3,23 |
6,2 |
|
|
|
|
|
|
|
|
|
|
|
1998 |
549 |
109,5 |
24,4 |
4,70 |
3,19 |
6,3 |
|
II etap: |
narzędzia - analiza danych - regresja
analiza regresji |
|
|
|
|
|
|
|
|
1999 |
612 |
124,1 |
30,3 |
4,82 |
3,41 |
6,4 |
|
|
|
|
|
|
|
|
|
|
|
2000 |
888 |
213,7 |
31,6 |
- |
- |
- |
|
III etap: |
analiza statystyczna |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- analiza wariancji (F) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- odchylenie standardowe składnika losowego (s_e) |
|
|
|
|
|
|
|
|
linearyzacja |
|
|
|
|
|
|
|
|
- współczynnik zmienności składnika losowego |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- współczynnik determinacji |
|
|
|
|
|
|
|
|
ln y_t = ln b_0 + b_1 * ln x_1 + b_2 * ln x_2 +ln e |
|
|
|
|
|
|
|
|
- błędy średnie szacunku parametrów strukturalnych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- badanie istotności parametrów strukturalnych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
IV etap: |
interpretacja modelu |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V etap: |
sporządzenie prognozy dla 2000 roku |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PODSUMOWANIE - WYJŚCIE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Statystyki regresji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wielokrotność R |
1,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R kwadrat |
99,6% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dopasowany R kwadrat |
99,5% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd standardowy |
0,0450 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obserwacje |
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ANALIZA WARIANCJI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Istotność F |
|
|
|
|
|
|
|
|
|
|
|
|
Regresja |
2 |
2,60 |
1,30 |
641,28 |
0,00 |
|
|
|
|
|
|
|
|
|
|
|
|
Resztkowy |
5 |
0,01 |
0,00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Razem |
7 |
2,61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynniki |
Błąd standardowy |
t Stat |
Wartość-p |
Dolne 95% |
Górne 95% |
Dolne 95,0% |
Górne 95,0% |
|
|
|
|
|
|
|
|
|
Przecięcie |
2,62 |
0,19 |
13,63 |
0,000 |
2,128 |
3,118 |
2,128 |
3,118 |
|
|
|
|
|
|
|
|
|
ln (x_1) |
0,58 |
0,04 |
13,98 |
0,000 |
0,472 |
0,685 |
0,472 |
0,685 |
|
|
|
|
|
|
|
|
|
ln (x_2) |
0,31 |
0,11 |
2,91 |
0,033 |
0,036 |
0,579 |
0,036 |
0,579 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b_0 = |
13,78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b_1 = |
0,58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b_2 = |
0,31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dane I: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2,49 |
2,28 |
|
|
|
|
|
|
|
|
|
|
|
1 |
2,79 |
2,73 |
|
|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
|
1 |
3,09 |
3,04 |
|
transponuj
albo
kopiuj - wklej specjalnie - transpozycja
Macierz X^T = |
2,49 |
2,79 |
3,09 |
3,68 |
4,05 |
4,39 |
4,70 |
4,82 |
|
1 |
3,68 |
2,98 |
|
|
2,28 |
2,73 |
3,04 |
2,98 |
3,02 |
3,23 |
3,19 |
3,41 |
Macierz X = |
1 |
4,05 |
3,02 |
|
|
|
|
|
|
|
|
|
|
|
1 |
4,39 |
3,23 |
|
|
|
|
|
|
|
|
|
|
|
1 |
4,70 |
3,19 |
|
|
|
|
|
|
|
|
|
|
|
1 |
4,82 |
3,41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8,0 |
30,0 |
23,9 |
|
|
|
18,1232 |
2,5196 |
-9,1959 |
|
|
|
|
funkcja: iloczyn macierzy
Iloczyn (X^T*X) = |
30,0 |
118,1 |
91,5 |
|
|
Anna Witczak:
Funkcja: macierz odwrotna
Macierz (X^T*X)^(-1) = |
2,5196 |
0,8461 |
-1,9073 |
|
|
|
|
|
23,9 |
91,5 |
72,1 |
|
|
|
-9,1959 |
-1,9073 |
5,4776 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s_e = |
0,0450 |
|
s^2_e = |
0,0020 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I etap Obliczenie macierzy wariancji i kowariancji D^2(b) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,0367 |
0,0051 |
-0,0186 |
|
|
|
|
|
|
D^2(b) = |
s^2_e * (X^T*X)^(-1) |
|
|
D^2(b) = |
0,0051 |
0,0017 |
-0,0039 |
|
|
|
|
|
|
|
|
|
|
|
-0,0186 |
-0,0039 |
0,0111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dane II: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Anna Witczak:
zmienna czasowa t, dla której liczona jest prognoza ex ante
T = |
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
student 17:
zawsze jest 1
1 |
|
|
|
|
|
|
|
|
|
|
|
|
X_T = |
student 17:
prognoza sciagnieta x_1
213,65 |
|
transponuj
albo
kopiuj - wkej specjalnie - tranzpozycja
X^T_T = |
1,0000 |
213,6527 |
31,5893 |
|
|
|
|
|
|
|
|
student 17:
prognoza x_2
31,59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
II etap obliczenie średniego błędu prgnozy ex ante D_T |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obliczenia pomocnicze: |
|
|
|
|
|
|
|
D_T = [s^2_e + X^T_T * D^2(b) * X_T]^0,5 |
|
|
|
|
|
|
X^T_T * D^2(b) = |
0,5390 |
0,2493 |
-0,4938 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(X^T_T * D^2(b)) * X_T = |
38,2127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D_T^2 = s^2_e + X^T_T * D^2(b) * X_T |
38,2148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D_T = |
6,18181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
III etap obliczenie względnego błędu prognozy ex ante V_T |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prognoza
y^_t = |
888,42 |
|
|
|
|
|
|
|
|
V_T = (D_T / y^_Tp)*100% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V_T = |
0,70% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Odpowiedź: . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zarówno średni bład prognozy ex ante jak również wzgledny bląd prognozy ex ante przyjmja aniskie wartosci zatem zbydowana prognoze można uznac za dopuszczona |
|
|
|
|
|
|
|
|
|
|
|
|
|