r, Ń
" A, B, n, v..
"
(x, y, z) ! (x1, x2, x3) ! (xi)
"
" i, j, k ! ei
" a b = aibi = akbk
" ij = ei ej
"
ńł
1 i, j, k 1, 2, 3
ł
= -1 i, j, k 1, 2, 3
ijk
ół
0
" c = a b ci = ajbk
ijk
" (a b) c = aibjck
ijk
" A,i = "A/"xi
" gradĆ = Ć,i divA = Ai,i rotA = Ak,j ei
ijk
"Ć = Ć,ii
"
A n dS = divAdV
S V
" dI/dt I = M(x, t)dV
V (t)
dI "M "M
= dV + M (v n) dS = + grad M v + Mdivv dV
dt "t "t
V S V
d
M(x, t)dV = @ + M divv dV
dt
V
V (t)
t = t0 B0 t B
P0 P
u = x - X ui = xi - Xi
x3
B
0
Q0
P0 dX
u+du
B
Q
u
d x
X
P
x
x2
x1
x = (X, t) xi = i(X1, X2, X3, t)
.P.
P'
P
..
P'
P
.
.P'
" "xi
J = | | = | | > 0
"X "Xj
x = AX + c
A, c detA > 0
konfiguracja
odniesienia
u
X
konfiguracja
x
aktualna
ds1 ds2
=
dS1 dS2
konfiguracja
odniesienia
dS
1
dS2
d s1
d s2
konfiguracja
aktualna
F dX
dx
"(X)
dx = (X + dX) - (X) H" dX a" F dX
"X
"
F =
"X
x1 = X1 + X2(et - 1)
x2 = X1(e-t - 1) + X2
x3 = X3
-x1 + x2(et - 1)
X1 =
1 - et - e-t
x1(et - 1) - x2
X2 =
1 - et - e-t
X3 = x3
u1 = X2(et - 1)
u2 = X1(e-t - 1
u3 = 0
-x1 + x2(et - 1)
u1 = x1 -
1 - et - e-t
x1(et - 1) - x2
u2 = x2 -
1 - et - e-t
u3 = 0
x1 = X1
x2 = X2 + AX3
x3 = X3 + AX2
A = const detF = 1 - A2 = 0 A = ą1
X1 = x1
x2 - Ax3
X2 =
1 - A2
x3 - Ax2
X3 =
1 - A2
u1 = 0
u2 = AX3
u3 = AX2
u1 = 0
x3 - Ax2
u2 = A
1 - A2
x2 - Ax3
u3 = A
1 - A2
P0, Q0 P, Q
2 2 2
|P0Q0|2 = dS2 = dX1 + dX2 + dX3 = dXjdXj = jk dXjdXk = dX dX
|P Q|2 = ds2 = dx2 + dx2 + dx2 = dxidxi = dx dx
1 2 3
"xi
dxi = dXj = FdX
"Xj
"xi "xi
ds2 - dS2 = dXj dXk - jk dXjdXk = 2 Ejk dXjdXk = dX (2 E) dX
"Xj "Xk
1 "xi "xi 1
Ejk = - jk = FT F - 1
2 "Xj "Xk 2
E
"ui "xi
= - ik
"Xj "Xj
1 "uj "uk "ui "ui
Ejk = + +
2 "Xk "Xj "Xj "Xk
1
T T
E = u + u + u u
2
1 "uj "uk "ui "ui
"
Ejk = + -
2 "xk "xj "xj "xk
ńł
x1 = X1 + aX2
ł
x2 = X2
ół
x3 = X3
ńł
X1 = x1 - ax2
ł
X2 = x2
ół
X3 = x3
1 a 0
J = 0 1 1
0 0 1
ł ł
0 a/2 0
1 "xi "xi
ł łł
Ejk = - jk = a/2 a2/2 0
2 "Xj "Xk
0 0 0
ł ł
1 "Xi "Xi ł 0 a/2 0 łł
"
Ejk = jk - = a/2 -a2/2 0
2 "xj "xk
0 0 0
ńł ńł
u1 = aX2 u1 = ax2
ł ł
u2 = 0 u2 = 0
ół ół
u3 = 0 u3 = 0
1 "uj "uk "ui "ui
Ejk = + +
2 "Xk "Xj "Xj "Xk
a2/2
"
Ejk Ejk
ł ł
0 a/2 0
ł łł
jk = a/2 0 0
0 0 0
"u(X , t)
v =
"t
a = t2
ńł
v1 = 2tX2
ł
v2 = 0
ół
v3 = 0
"u(x , t) "u
v = + v
"t "x
a = t2
ńł
v1 = 2tx2 + t2v2
ł
v2 = 0
ół
v3 = 0
ńł
v1 = 2tx2
ł
v2 = 0
ół
v3 = 0
v2 = 0
E
P Q
|PQ| - |P0Q0| ds - dS
= a" P Q
|P0Q0| dS
P Q > 0 P Q < 0 i = dXi/dS
(ds - dS)(ds + dS) (ds - dS)(ds - dS + 2 dS) dXi dXk
= = 2Eik
dS.dS dS.dS dS dS
P Q(P Q + 2) = 2 Eikik
dS OX1 j = 1j (1 = 1, 2 = 3 = 0)
11(11 + 2) = 2 E11 ! 11 = 1 + 2E11 - 1
dS = dX1 E11
1
P0Q0 X1, P Q = 11; 1 = (1, 0, 0), i = 1i
2
P0R0 X2, P R = 22; 2 = (0, 1, 0), i = 2i
X
2
R
R
ds2
dS2
Q
ds1
dS1 Q X1 P
P
dXi dxi
"
i = , i =
dS ds
"ui
xi = ui + Xi ! dxi = + ik dXk
"Xk
"ui
+ ik
"Xk "ui dXk dS
"
i = dXk = + ik
ds "Xk dS ds
"ui
+ ik
"Xk "ui k
"
i = dXk = + ik
ds "Xk 1 +
cos 12 = 0
2E12
" "
(1) (2) = cos " =
12
(1 + 2E11)(1 + 2E22)
Eij Eij = 0 P Q = 0 " = 0
!
du d
v(X, t) = = (X, t)
dt dt
d
v(x, t) = [-1(x, t), t]
dt
x x + dx
"v
dv = dx
"x
L = v = F-1
L
D = 0.5 (L + LT ) !
= 0.5 (L - LT ) !
F = 1 + u
1
T
H" ( u + u)
2
1 d
T
D H" ( v + v) =
2 dt
gradu
1
T
= ( u - u)
2
1 "uj "uk "ui "ui 1
Ejk = + + = ejk + (eij + ij)(eik - ik)
2 "xk "xj "xj "xk 2
Ejk H" jk jk jk
Y,y
(x,y)
(X,Y)
R
ż
X,x
X = R cos Ń0 x = R cos (Ń + Ń0)
Y = R sin Ń0 y = R sin (Ń + Ń0)
u(X, Y ) = x - X = R cos(Ń + Ń0) - R cos Ń0 = X (cos Ń - 1) - Y sin Ń
v(X, Y ) = y - Y = X sin Ń + Y (cos Ń - 1)
xx = cos Ń - 1
yy = cos Ń - 1
xy = 0
xx = yy = 0
2 2
"u "u "v
Exx = + (1/2) + = (cos Ń - 1) + (1/2) (cos Ń - 1)2 + sin2 Ń = 0
"X "X "X
u v
+
=
x y
u v
x y
xy = v + u
2
y
x
u
v
x
y
u
v
2xy x -
=
y
v
u
-
x y
(ij - ij) nj = 0
3 - I2 + II - III = 0
I = kk
II = 1/2( iijj - ijji)
III = det ij = (1/6) im jn kp
ijk mnp
"V - "V0
= kk = divu
"V0
ł ł ł ł
3 -1 0 4 0 0
ł-1 3 0łł .10-3 ! ł0 2 0łł .10-3
=
0 0 1 0 0 1
ij u
ki,hj = 0
phi mjk
ijk
ij,kl + kl,ij - il,jk - jk,il = 0
"211 "222 "212
+ = 2
"x2 "x2 "x1 "x2
2 1
"222 "233 "223
+ = 2
"x2 "x2 "x2 "x3
3 2
"233 "211 "231
+ = 2
"x2 "x2 "x3 "x1
1 3
" "23 "31 "12 "211
- + + =
"x1 "x1 "x2 "x3 "x2"x3
" "23 "31 "12 "222
- + =
"x2 "x1 "x2 "x3 "x3"x1
" "23 "31 "12 "233
+ - =
"x3 "x1 "x2 "x3 "x1"x2
" [kg/m3]
dm
=
dV
Ł
F
s
1
F
n
V
F
2
M
M = dm = dV
V
= const M = V
"
s
d m
d V
d P
V
dm dV dP
dP
b =
dm
dP
b" =
dV
b" = b
dP = dm g g
g = 9, 81m/s2 b = g b" = g
"
(n)
T
n
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Mxxxxx "P
"s xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
n
"S "P
T(n)
"P
T(n) = lim
"S0
"S
"
T(n) n
T(n) = n +
n
n
n
n = T(n) n = Ti(n)ni
n = T(n) T(n) - (n)2
n
(n)
T
n
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Mxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxx
"s xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx n
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
"
M n
Tn M
T(i) (i = 1, 2, 3)
ei
T(n) = T(i) ni
x
3
(3)
T
33
(2)
31 32 T
(1)
T
13 23
21 22
x
11 12
2
x
1
n
T(n) = n ! Ti(n) = ijnj
M
ł ł
7 0 2
ł0 5 0łł (MP a)
2 0 4
T(n) n
n = (2/3, -2/3, -1/3)
I = 8, II = 5, III = 3 (MP a) T(n) = (4, -10/3, 0)(MP a)
n = 44/9MP a = 5, 2MP a cos H" 0.94; H" 200
"
n M
T(n) = n
n - n = ( - 1)n = 0 ! (ij - ij) nj = 0
n n n = nini = n1 + n2 + n2 = 1
2 2 3
(ij - ij) = 0
3 - I 2 + II - III = 0
I, II, III
I = ii
1
11 12 22 23 33 31
II = (ii jj - ij ji) = + +
21 22 32 33 13 11
2
1
III = ip jq kr = (ij)
ijk pqr
6
I, II, III
k
n(k)
I = 1 + 2 + 3
II = 12 + 23 + 31
III = 123
ł ł
3 1 1
ł1 0 2łł (MP a)
1 2 0
3 - 32 - 6 + 8 = 3 + 23 - 3( + 2) = ( + 2)( - 4)( - 1) = 0 I = 4, II =
1, III = -2 (MP a)
" "
nI = (0, 1/ 2, -1/ 2)
" " "
nII = (1/ 3, -1/ 3, -1/ 3)
" " "
nIII = (-2/ 6, -1/ 6, -1/ 6)
"
1
p = (11 + 22 + 33)
3
pij
ł ł
p 0 0
ł0 p 0łł
0 0 p
sij = ij - p ij
ł ł ł ł
s11 s12 s13 11 - p 12 13
łs21 s22 s23łł = ł
sij = 21 22 - p 23 łł
s31 s32 s33 31 32 33 - p
(sij - s ij) nj = 0
s3 - IIs s - IIIs = 0
Is = sii
1
IIs = sij sji
2
1
IIIs = sij sjk ski = (sij)
3
Is = s1 + s2 + s3 = 0
IIs = -(s1s2 + s2s3 + s3s1)
IIIs = s1s2s3
Is = 0
1 1
2
IIs = (I - 3 II) = (1 - 2)2 + (2 - 3)2 + (3 - 1)2
3 6
1
3
IIIs = (2 I - 9 I II + 27 III)
27
b0 dA
0
b da N
dA n da
konfiguracja
odniesienia
N
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
dA
dP
n
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
da
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
konfiguracja
aktualna
J = F
b0 = J b
= J
0
n da = J N F-1 dA
dP
n = lim
da0 da
!
dP
N S = lim
dA0 dA
! S = J F-1
F-1dP
N Ą = lim
dA0 dA
! Ą = J F-1F-T
"
" S
"
D F E
ą = D = S = Ą
F = 1 + u F H" 1 + u
1 1
H" (1 + u) S = (1 + u) Ą (1 + u)T
1 + u 1 + u
H" S H" Ą
dI
= fdV + gdS
dt
V S
I = M(x, t)dV M, f V g S
V
"
M = dV f = g = 0
V
d
dV = 0
dt
V
Ł + divv = 0
"
M = v v
f = F g = T(n)
d
vdV = bdV + T(n)dS
dt
V V S
d( v)
+ ( v) v dV = bdV + (n)dS
dt
V V S
Ł
Łv + v + ( v) (v) = b + div
Ł
( Ł + v ) v + v = b + div
Ł
div + b = v
b" = b
dv "v
div + b" = = + v v
x
dt "t
X x
"v
divS + b" = 0
0
"t
X
"v
div(Ą FT) + b" = 0
0
"t
X
" = T
-
-
M = r v r = OM f =
r b g = r T(n) O
d
r vdV = r b dV + r T(n)dS
dt
V V S
d
r vdV = r bdV + r ( n)dS
dt
V V S
(v v) + r ( v). + (r v) div v = r b + ( - T) + r
r ( v). + (r v) div v = r b + ( - T) + r
Ł
r Łv + r v + (r v) div v = r b + ( - T) + r
Ł
r Łv + (r v) div v = ( - T ) + r + r b - r v
T
=
(n)
ijkxjb"dV + ijkxjTk dS = 0
k
V S
ijkxjb"dV + ijkxj(lknl)dS = 0
k
V S
ijkxjb"dV + ijkxj,llkdV + ijkxjlk,ldV = 0
k
V V V
ijk [xj(lk,l + b") + jllk] dV = 0
k
V
ijkjk = 0
jk = kj
= T
(FS) = (FS)T
Ą = ĄT
"
u M = (u+1/2vv)
f = b v g = g1 + g2
g1 = T(n) v g2 = -q n
q
[q] = [J/m2 s]
d 1
u + v v dV = b vdV + T(n) vdS- q n dS
dt 2
V V S S
dE dC d W d Q
+ +
dt dt dt dt
d'W
dt
dE dC
,
dt dt
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
d'Q
dt
1 1
u + Łu + v v + Ł v v + ( u + v v) v = b v + div v + v - q
Ł Ł
2 2
u = D - div q
Ł
D
1
T
D = ( v + v)
2
ij,j + bi = vŁi
vi
ij,j vi + bi vi = vŁi vi
(ij vi),j - ij vi,j + bivi = vŁi vi
ij vjdV - (ij Dij)dV + bividV = vŁi vidV
V V V V
Ł
ą a" Tn v dS + b vdV = D dV + v v dV
S V V V
d 1
ą = (L)dV + v v dV
dt 2
V V
d 1
W = (S)dV + v v dV
0
dt 2
V0 V0
d 1
W = (Ą)dV + v v dV
0
dt 2
V0 V0
"
T (T > 0)
S s
S = sdV
V
dS = dS(e) + dS(i)
dQ
ds(e) =
T
dS(i) e" 0 dS(i) = 0
dS(i) = dS - dS(e) e" 0
dS 1 dQ
- e" 0
dt T dt
T1 T2
dS1 = -dQ/T1
dS2 = dQ/T2
dS = dQ(1/T2 - 1/T1) e" 0
T1 > T2
d q n q n
s dV + dS = a dV + dS e" 0
dt T T
V S V S
q
a dV + dV e" 0
T
V V
1 1
a + q - q T e" 0
2
T T
1 1
a + qi , i - qi T, i e" 0
2
T T
qi, i = D - u
Ł
1
D - (u - T a) - qi T, i e" 0
Ł
T
D = ij Dij - (u - T a) = u - T s D
Ł
p
e
ij Dij = ij Dij + ij Dij
= (e, T, )
e
= Dij
ij
= u - T a - s j
Ł Ł
u - T a = + s j
Ł Ł
" " "
= + j +
Ł Ł
"e ij "T "
ij
" "
s = - ij = -
"T "ij
"
p
D = ij Dij +
Ł
"
q = -k T
k [k] = [J/(m K s)] k > 0
cv [c] = [J/(kg K)]
- q = cv j
ui = vi ui vi
Ł
ij = 1/2(ui, j + uj, i) ij
Dij = 1/2(vi, j + vj, i) Dij
Ł + vi, i = 0
ij, j + bi = vŁi ij
u = ij Dij - qi, i u, qi
Ł
1 1
a + qi , i - qi T, i e" 0 s, T
2
T T
qi = -k T, i
-qi, i = cv j
ij = fij(kl, T )
ij = fij (kl)
E
X
X
E
T
u(E, s) s
u(E, s) s(E, T )
= u - T s u Ą E
" E E + dE s s + ds
"u "u
du = dE + ds
"E s=const "s
E=const
du = dW + dQ.
0
dW = Ą dE dQ
dQ = T ds
0
"u "u
Ą(E, s) = 0 T =
"E s=const "s
E=const
" q = 0
E E + dE T T + dT
" "
d = dE + dT
"E T =const "T
E=const
d = du - T ds - sdT
1 1
d = dW + T ds - T ds - sdT = Ą dE - sdT
0 0
" "
Ą(E, T ) = 0 s = -
"E T =const "t
E=const
"u "
Ą(E, s) = 0 Ą(E, T ) = 0
"E s=const "E T =const
" E
"Ąij "Ąij
Ąij(E, s) = Ekl + ds
"Ekl s=const "s
E=const
"Ąij "Ąij
Ąij(E, T ) = Ekl + dT
"Ekl T =const "T
E=const
"Ąij "2u
a
Cijkl = = 0
"Ekl s=const "Eij"Ekl s=const
"Ąij "2
i
Cijkl = =
"Ekl T =const 0 "Eij"Ekl T =const
"Ąij "2u
bij = =
"s "s2 s=const
s=const
"Ąij "2
aij = =
2
"T "T
T =const T =const
" u
"
Cijkl = Cjikl Ąij = Ąji
"2 "2
Cijkl = Cklij =
"Eij"Ekl "Ekl"Eij
Cijlk = Cjikl
Cijl 21
ł ł ł łł ł
11 C1111 C1122 C1133 C1112 C1123 C1131 11
ł22ł łC1122 C2222 C2233 C2212 C2223 C2231łł 22 ł
ł ł ł łł ł
ł33ł łC1133 C2233 C3333 C3312 C3323 C3331łł 33 ł
ł ł ł łł ł
=
ł12ł łC1112 C2212 C3312 C1212 C1223 C1231łł212ł
ł ł ł łł ł
ł23łł łC1123 C2223 C3323 C1223 C2323 C2331łłł223łł
31 C1131 C2231 C3331 C1231 C2331 C3131 231
Ox2 x3
x1 = -x1, x2 = x2, x3 = x3
u1 = -u1, u2 = u2, u3 = u3
21 = -21 31 = -31
33 = C113311 + C223322 + C333333 + 2C331212 + 2C332323 + C333131
33 = C113311 + C223322 + C333333 - 2C331212 + 2C332323 - 2C333131
33 = C113311 + C223322 + C333333 + 2C331212 + 2C332323 + C333131
33 = 33 C3312 = C3331 = 0
C1112 = C1113 = C2212 = C2213 = C3312 = C3313 = 0
13
ł ł ł łł ł
11 C1111 C1122 C1133 0 C1123 0 11
ł22ł ł łł
C2222 C2233 0 C2223 0 22 ł
ł ł ł łł ł
ł33ł ł łł
C3333 0 C3323 0 33 ł
ł ł ł łł ł
=
ł12ł ł
C1212 0 C1231łł212ł
ł ł ł łł ł
ł23łł ł łłł223łł
(symetria) C2323 0
31 C3131 231
9
ł ł ł łł ł
11 C1111 C1122 C1133 0 0 0 11
ł22ł ł łł
C2222 C2233 0 0 0 22 ł
ł ł ł łł ł
ł33ł ł łł
C3333 0 0 0 33 ł
ł ł ł łł ł
=
ł12ł ł łł212ł
C1212 0 0
ł ł ł łł ł
ł23łł ł łłł223łł
(symetria) C2323 0
31 C3131 231
"
Ąij H" ij Ekl H" kl T = T0 + "T s = s0 + "s
i
ij = Cijkl + bij"T
kl
a
ij = Cijkl + aij"s
kl
i a
Cijkl Cijkl
-1
ij = Cijklkl + ąij"T
-1
ij = Cijklkl + ij"s
-1
Cijkl Cijkl ąij
"
Ś
"Ś
ij =
"ij
1 1
Ś = ij ij = Cijkl ij kl
2 2
" Cijkl
Cijkl = ijkl + (ikjl + iljk)
ł ł ł łł ł
11 + 2 0 0 0 11
ł22ł ł
+ 2 0 0 0łł 22 ł
ł ł ł łł ł
ł33ł ł
+ 2 0 0 0łł 33 ł
ł ł ł łł ł
=
ł12ł ł
0 0 0 0 0łł212ł
ł ł ł łł ł
ł23łł ł
0 0 0 0 0łłł223łł
31 0 0 0 0 0 231
ij = kkij + 2 ij
"
ij = -mij m/(- ) a" K
kk
K = + 2/3
K
11 = -fc ij = 0 11/11 = E
(3 + 2)
E =
+
-22/11 =
=
2( + )
12 = 21 = 0
12/212 = G
G =
"
Ś = 0.5 ij > 0 = 0
ij ij
Ś
1
2
Ś = I - 2(1 + )II
2E
1
2 2 2
Ś = (1 + )(1 + 2 + 3) - (1 + 2 + 3)2
2E
1
Ś = (1 + )[(1 - 2)2 + (2 - 3)2 + (3 - 1)2)] + (1 - 2)(1 + 2 + 3)2]
2E
1 = -1; 2 = 3 = 0; Ś > 0 ! E > 0
1 = -(2 + 3) = 1; Ś > 0 ! 1 + > 0
1 = 2 = 3 = 1; Ś > 0 ! 1 - 2 > 0
E > 0, 1 - 2 > 0, (1 + ) > 0 Ś > 0
oddialywania
przemieszczenie u
zewnetrzne i
predkosc vi
F Ł
i
i
rownowaga warunki zgodnosci
(ruch) odksztalcen
odksztalcenie
naprezenie
ij
ij
zwiazki
konstytutywne
Ł
S
ij S
u
i
V
ij
F
Su
" V S = Su + S
Cijkl b u
V u(X, t0) =
Ł
u(0)(X); u(X, t0) = v(0)(X) V u(X, t) = u"(X, t) Su
n = Ł S
ij = () + (T )
ij ij
()
ij
(T )
ij
1
() = ij - ij kk
ij
2 3 + 2
(T ) = ą(T - T0 )ij
ij
E
=
(1 + )(1 - 2)
E
=
2(1 + )
E ą
1
ij = ij - ij kk + ą(T - T0 )ij
2 3 + 2
ij = ij kk + 2 ij - (3 + 2) ą ij (T - T0)
1
ij = [ (1 + ) ij - kk ij ]
E
E
ij = ij + kk ij
1 + 1 - 2
dQ
ds = ds(e) =
T
dQ
T a = = qi, i
dt
"s "s
T Ł + j = qi, i
"ij ij "T
"s "2
cv = T = -T
2
"T "T
"s "2 1 "ij
= - = -
"ij "ij "T "T
-qi, i = k "T qi = -k T, i
"ij
= -(3 + 2) ą ij
"T
k "T = cv j + (3 + 2) ą T kk
Ł
ij = 1/2(ui, j + uj, i)
Ł + ui, i = 0
Ł
ij, j + bi = i
k "T = cv j + (3 + 2) ą T kk
Ł
ij = ij kk + 2 ij - (3 + 2) ą ij (T - T0)
(1); ui(3); ij(6); ij(6), T (1)
1 1 1 1
W = ij ij = sij + kk ij eij + mm ij
2 2 3 3
1 1
W = sijeij + kkmm
2 6
1 1 sij IIs 1 +
(1)
W = sijeij = sij = = IIs
2 2 2G 2G E
2
1 1 1 I I 1 - 2
(2) 2
W = kkmm = I I = I = = I
6 6 6 3K 18K 6E
T = ą "T
ą ( 10-6/K)
19, 1 22, 2
18 21
5 11
7 14
10 18
d
ą(T - T ) dx
0
1
T1
h/2
Tsred dx
h/2
T2
ą(T - T ) dx
2
0
T1 h
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
T2
x dx
T > T1
2
= E = E ą "T E = 280MP a "T = 100K
280 10 10-6 100 = 280kP a
"l = ą "T l
T1 + T2
Tśred =
2
T1 + T2
"l = ą (Tśred - T0) l = ą ( ) l
2
h d = ą (T2 - T0) dx - ą (T1 - T0) dx
d (T2 - T1)
= ą
dx h
d2w M (T2 - T1)
= + ą
dx2 EJ h
d2w ą T0 T0ą
T2 - T1 = T0 x = x w = x3 + C1x + C2 w = 0 x =
dx2 h 6h
0 x = l
ij = ij + 2ij = kk = ui,i
1
ij = (ui,j + uj,i)
2
xj
ij,j = ,jij + ui,jj + uj,ji
ij,j + bi = 0
( + ),i + "ui + bi = 0
( + ) u + "u + b = 0
xj
("ui),j + ( + ),ij + ( bi),j = 0
i j; j i
("uj),i + ( + ),ji + ( bj),i = 0
2"ij + 2( + )ij + [( bi),j + ( bj),i] = 0
Ś = kk
2( + )
"ij + Ś,ij - ij "Ś + [( bi),j + ( bj),i] = 0
3 + 2 3 + 2
l
"zz/"z + g = 0 z = l
xz = yz = zz = 0
zz
zz = - g(l - z)
xx = yy = g(l - z)
E
g(l - z)
zz = -
E
xy = yz = zx = 0
ux = g(l - z) x
E
uy = g(l - z) y
E
g
uz = [z2 - 2lz + (x2 + y2)]
2E
13 = 23 = 33 = 0; b3 = 0
33 = 0
33 = - (11 + 22)
E
y
yy
xx
x
xy
X3
z
X
2
X
1
ńł
1
ł
ł
11 = (11 - 22)
ł
ł
E
ł
ł
ł
ł
ł
1
22 = (22 - 11)
ł
E
ł
ł
ł
ł
ł
ł
1 +
ł
ół
12 = 12
E
Ox1x2
u1 = u1(x1, x2); u2 = u2(x1, x2); u3 = 0
ij = 0.5(ui,j + uj,i)
"u1 "u2 1 "u1 "u2
11 = ; 22 = ; 12 = ( + )
"x1 "x2 2 "x2 "x1
11, 22, 12 x3 23 = 31, 33 = 0
"u1 "u2
1 = +
"x1 "x2
y
yy y
y
xx 2xy
x x
x
y
yy
2
xy
xx
x
z
ńł
1 +
ł
ł
11 = 11 - (11 + 22 + 33)
ł
ł
E E
ł
ł
ł
ł
ł
ł
1 +
ł
ł
ł 22 = 22 - (11 + 22 + 33)
ł
ł
E E
ł
ł
ł
ł
ł
ł
1 +
ł
ł
33 = 33 - (11 + 22 + 33)
ł
ł
E E
ł
ł
1 +
ł
ł
12 = 12
ł
ł
E
ł
ł
ł
ł
ł
ł
ł 1 +
ł
ł 13 = 13
ł
ł
E
ł
ł
ł
ł
ł
ł
1 +
ł
ół
23 = 23
E
33 = (11 + 22); 13 = 23 = 0
( )3
ńł
1
ł
ł
11 = (11 - 1 22)
ł
ł
ł E1
ł
ł
ł
ł
ł
1
22 = (22 - 1 11)
ł E1
ł
ł
ł
ł
ł
ł
1 + 1
ł
ł
ół 12 = 12
E1
E
E1 = , 1 =
1 - 2 1 -
ńł
"11 "12
ł
ł
+ + b1 = 0
ł
ł
"x1 "x2
ł
ł
ł
ł
"21 "22
+ + b2 = 0
ł
ł
"x1 "x2
ł
ł
ł
ł
ł
ół
b3 = 0
x3
"211 "222 "212
+ = 2
"x2 "x2 "x1"x2
2 1
"(11 + 22) = 0
"2 "2
" = +
"x2 "x2
1 2
ńł
"11 "12
ł
ł
+ = 0
ł
ł
"x1 "x2
ł
ł
ł
ł
"21 "22
+ = 0
ł
ł
"x1 "x2
ł
ł
ł
ł
ł
ół
"(11 + 22) = 0
Ś
"2Ś
11 =
"x2
2
"2Ś
22 =
"x2
1
"2Ś
12 = -
"x1"x2
Ś
"4Ś "4Ś "4Ś
""Ś a" + 2 + = 0
"x4 "x2"x2 "x4
1 1 2 2
13 = 23 = 33 = 0 13 = 23 = 0
11, 12, 22 11, 12, 22, 33
13 = 23 = 0 13 = 23 = 33 = 0
11, 12, 22, 33 11, 12, 22
r, Ń
x = r cos Ń; y = r sin Ń
"rr 1 "rŃ rr - ŃŃ
+ + = 0
"r r "Ń r
"rŃ 1 "ŃŃ 2rŃ
+ + = 0
"r r "Ń r
y
rr
r
r
x
1
rr = (rr - ŃŃ)
E
1
= (ŃŃ - rr)
E
2(1 + )
r Ń = rŃ
E
Ś = Ś(r, Ń)
1 "Ś 1 "2Ś
rr = +
r "r r2 "Ń2
"2Ś
ŃŃ =
"r2
" 1 "Ś
rŃ = -
"r r "Ń
""Ś = 0
1 " 1 " "2 1 "Ś 1 "Ś "2Ś
+ + + + = 0
r "r r2 "Ń2 "r2 r "r r2 "Ń2 "r2
,
. ,
sprzezystosc
idealna , ,
wzmocnienie
plastycznosc
D
C
B
oslabienie
1
ET
A
x
zniszczenie
E
1
H
K
O
p e
E1
1
E E E
1 1 1
f(ij) = F (ij) - k2 = 0, (k = const)
"f
df = dij = 0
"ij
"f
df = dij < 0
"ij
f(ij) = F (ij) - k2 = 0
f
dij
ij
( )
f =k
ij
.
.
obciazenie
ij
.
odciazenie
O
.
sprezystosc
( )
f <0
ij
dij = de + dp
ij ij
dij = de
ij
1
de = Dijkl dkl = [ (1 + ) dij - dkk ij ]
ij
E
g(ij)
"g
dp = d
ij
"ij
g = f
"f
dp = d
ij
"ij
dp f(ij) = 0
ij
f = f(ij, p , k)
ij
p k
ij
f = 0 f < 0
k
e
e = e( ) = ()
e e
e = 3 IIs
"
p
dW = e d p
"
p p
d = 2/3 d
p
ij ij
f(ij, p , k) = F (ij, p ) - k2( ) = 0
p
ij ij
g(ij, p , k)
ij
"g
dp = d
ij
"ij
f(ij, p , k) = 0
ij
f = 0 f + df = 0
"f "f "f
df = dij + dp + dk = 0
"ij "p ij "k
ij
k k = k(p )
ij
dij = de + dp
ij ij
e
dij = Cijkl de
kl
"g
e e
dij = Cijkl (dkl - de ) = Cijkl dkl - d
kl
"kl
"f "g "f "g "f "k "g
e
Cijkl d - + d + d = 0
kl
"ij "kl "p "ij "k "p "ij
ij ij
e
("f/"ij) Cijkl dkl
d =
e
h + ("f/"mn) Cmnpq("g/"pq)
h
"f "g "f "k "g
h = - -
"p "ij "k "p "ij
ij ij
dij
e
"g ("f/"rs) Crskl dkl "g
dp = d =
ij
e
"ij h + ("f/"mn) Cmnpq("g/"pq) "ij
p
e
dij = (Cijkl + Cijkl) dkl
e e
Cijtu ("f/"rs) ("g/"tu) Crskl
p
Cijkl = -
e
h + ("f/"mn) Cmnpq ("g/"pq)
p p
Cijkl = Cklij f = g
f = g
e e
Cijtu ("f/"rs) ("f/"tu) Crskl
p
Cijkl = - .
e
h + ("f/"mn) Cmnpq ("f/"pq)
Q u
= f()
= E E
S0
= 0 < S0 > 0 = S0
=
Ł
-
s e
relaksacja
pelzanie
czas czas
E
Ł
= +
Ł
E
= 0 = const = 0
Ł
Ł
0 = +
E
E
= C exp - t
C
t = 0- t =
1 1
() - (0-) = [() - (0-)] + śred.
E
(0-) = (0-) = 0 () = 0 () = 0 C = 0 = E0
E
= E0 exp - t
0
E
R(t) = E exp - t
tR = /E t " = 0
= 0 = const
1 1
(t) = t + 0
E
0
1 1
P (t) = t +
E
s
e
czas
czas
E
(t) = E(t) + (t)
Ł
= const 0-
dt = Edt + dt
Ł
0- 0- 0-
dt = [() - (0-)] = 0
Ł
0-
Edt = 0
0-
(t)
(t)dt = 1
0-
(t) = 0(t)
(t) = E0 + 0(t)
R(t) = E + (t)
= 0
0 E
= (t) + (t)
Ł
0 E
(t) = + C exp - t
E
t = 0 = 0 C = -0/E
0 E
(t) = 1 - exp - t
E
1 E
P (t) = 1 - exp - t
E
Wyszukiwarka
Podobne podstrony:
Lab5 1 R4 lab51Lab4 1 R4 lab41R4 VI(1)Tazbir Kultura szlachecka w Polsce R4T R4 2R4 Austria i PrusyR4 próby stabilizacji 1924 1926Instrukcja R4 Silnik krokowyR4R4Instrukcja R4 Zał3 Sterownik SSK B03R4Instrukcja R4 Zał2 Sterownik SSK B05R4 1r4więcej podobnych podstron