01 Introduction

background image

APPLIED PHYSICS

for CIVIL ENGINEERS

Faculty of Civil Engineering

Silesian University of Technology (SUT)

Lecture (30 h) & classes (15 h) - 1

st

semester

dr hab. inż. Bogusława ADAMOWICZ, prof. nwz. Pol. Śl.

Institute of Physics, ul. Krzywoustego 2
building („new”) of Electrical Engineering Faculty

Office – room No. 422

Boguslawa.Adamowicz@polsl.pl

background image

Course content

Heat

Fundamentals of thermodynamics
Heat transfer
Thermal properties of materials
Solar energy

Liquids

Fundamentals of liquid thermodynamics
Mass transport
Water vapour and humidity

Acoustics

Acoustic waves
Sound effects
Acoustics protection

background image

Literature - textbooks

1.

P. A. Tipler, Physics for Scientists and Engineers, W.H. Freeman, 4th
Ed. (1998), 155 zl (ABE)

2.

M. Mansfield, C. O`Sullivan, Understanding Physics, Wiley & Sons,
Chichester (1998) (SUT Library)

3. Yunus A. Cengel, Heat Transfer. A Practical Approach 2nd

Ed.,McGraw-Hill, Boston 2003. 219 zł (ABE)

4. C.-E. Hagentoft, Introduction to Building Physics, Studentlitteratur AB

(2001). 229 zl (ABE).

5. Foundation of Engineering Acoustics, Academic Press, (SUT Library).

269 zl (ABE)

background image

http://web.mit.edu/lienhard/www/ahtt.html

A Heat Transfer Textbook

,

3rd edition

John H. Lienhard IV, Professor, University of Houston

John H. Lienhard V, Professor, Massachusetts Institute
of Technology

Copyright (c) 2000-2005, John H. Lienhard IV and John
H. Lienhard V. All rights reserved.

On-line free access

background image

Books - Physics for Civil Engineers course
Silesian University of Technology Library

General Physics

English through civil engineering / Mariusz Meller. - Koszalin : Wydaw. Politechniki Koszalińskiej,
1998

Glossary of building and civil engineering terms / British Standards Institution. - Oxford :

Blackwell Scientific Publ., 1993
The Penguin dictionary of building / James H. Maclean and John S. Scott. - 4th ed., [repr. with
minor rev.]. - London : Penguin Books, 1995
Modern physics for scientists and engineers / Stephen T. Thornton, Andrew Rex. - 2nd ed.. - Fort
Worth : Saunders College Publ., 2000
Advanced level physics / Michael Nelkon, Philip Parker. - 7th ed., repr.. - Oxford : Heinemann,
1998

Heat and mass transfer

Fundamentals of heat and mass transfer / Frank P. Incropera, David P. DeWitt. - 4th ed.. - New
York : John Wiley & Sons, 1996
Thermal energy conservation : building and services design / Weller J.W., Youle A.. - London :
Applied Science Publ., 1981

Building ventilation : theory and measurement / David Etheridge, Mats Sandberg. - Chichester :

John Wiley & Sons, 1996
Displacement ventilation / SKISTAD HAKON. - Taunton : Research Studies Press Ltd., 1994
Heat, air and moisture transfer in highly insulated building envelopes (Hamtie) / Hugo S.L.C.
Hens. - Birmingham : FaberMaunsell, 2002

Photovoltaic energy

Photovoltaic solar energy generation / A. Goetzberger, V.U. Hoffmann. - Berlin : Springer, 2005
Energy in architecture : the European passive solar handbook / / [Red.] Goulding John R., [red.]
Lewis J. Owen, [red.] Steemers Theo C.. - - Repr.. - London : B.T. Batsford Ltd, 1993

Acoustics

Encyclopedia of acoustics / Malcolm J. Crocker, ed.-in-chief. - New York : John Wiley & Sons
The master handbook of acoustics / F. Alton Everest. - 4th ed.. - New York : McGraw-Hill, 2001
Foundations of engineering acoustics / Frank Fahy. - San Diego : Academic Press, 2001
Active control of sound / P.A. Nelson and S.J. Elliott. - 3rd print.. - London : Academic Press, 1995

background image

Literature in Polish

(1) Z. Kleszczewski, Fizyka klasyczna, skrypt Pol. Śl.

(2) S. Kończak, A. Klimasek, Wykłady z podstaw fizyki, wyd. Pol.

Ś

l. 2002

(3) A. Zastawny, Zarys fizyki, wyd. Pol. Śl. 1997

(4) Cz. Bobrowski, Fizyka – krótki kurs, WNT, W-wa, 1998

(wyd.VI)

(5) J. Orear, Fizyka, WNT, W-wa, 1998

(6) A. Januszajtis – Fizyka dla politechnik, PWN, W-wa, 1977

(7) R. Resnick, D. Halliday, Fizyka, PWN, W-wa

(8) R. Feynman, Wykłady z Fizyki, PWN, W-wa

background image

Scope of Physics

Physical phenomena

Fundamental interactions and elemental
particles

Physical values

Unit systems

Mathematical and physical models

background image

Physics – basis for technology

Thermodynamics

engines (transport), buildings (architecture)

Electromagnetism

telephone, radio, tv

Optics

optical fibres

telecommunication

Solid state physics

micro- and nanoelectronics

Quantum physics

lasers, quantum computers

Nuclear physics

energetics

background image

World of physical phenomena

10

20

10

10

10

0

10

-10

10

-20

Age of the Universe

Man

Neutrons

Miuon, hiperion

Resonanses

T

(

se

conds

)

background image

World of physical phenomena

Galaxy

Cell

Atom

Nucleus

mete

rs

Accelerator

Nucleus

Microscope

Atom structure

background image

Physical laws are the same

in the whole UNIVERSE

Physical laws are the same

in the whole UNIVERSE

Physics

– fundamental natural science

Exploring fundamental and

universal properties of matter and
phenomena in the surrounding world

World of physical phenomena

background image

Understanding
the Universe

Albert Einstein (1905)

The World Year of
Physics 2005

background image

Structure of matter – elemental „blocks”

Elemental particles (2001)

Quarks - 3 colours

3 generations of quarks and

leptons

Quarks and leptons

have no structure probably

Q

U

A

R

K

S

L

E

P

T

O

N

S

background image

Interaction

Intensity

Gravitational 10

-39

Electromagnetic

10

-3

Weak 10

-5

Strong 1

Fundamental interactions

gravitational

electromagnetic

weak

strong

background image

World of physical phenomena

2

2

1

r

m

m

G

F

g

=

2

2

1

0

4

1

r

q

q

F

e

=

πε

gravitation -
Newton`s law

electrostatics -
Coulomb`s law

42

10

=

g

e

F

F

In microworld – little role of
gravitation

F

g

F

g

F

e

F

e

background image

Methodology of Physics

METHOD:
-

observation

-

measurement

-

analysis of experimental data

hypothesis

model

physical law

Physical values

– properties of bodies or phenomena which can

be compared

quantitatively (numerically)

with the same

properties of different bodies or phenomena

• EXPERIMENT • MATHEMATICAL MODEL

Measurement

of physical value – comparison with a

unit

value.

Physical measurements – always charged with an

uncertainty.

background image

Fundamental units - system

SI

Length

1 meter (m)

Mass

1 kilogram (kg)

Time 1 second (s)

Current intensity 1 amper (A)

Temperature 1 kelvin (K)

Light intensity

1 candela (cd)

Amount of substance

1 mole (mole)

1 m

t

t = 1s

Cs

133

vacuum

t = 1/299792458 s

background image

Related units

background image

Important physical constants

ligth velocity in vacuum

Planck constant

electron mass

electron charge

Avogadro number

Boltzmann constant

gravitational constant

background image

I have found the solution ! But what for...

background image

Physics

classical

quantum

non-relativistic

relativistic

h

= 6.62·10

-34

J·s

XXI century

XX century

PHYSICS

c

= 3·10

8

m/s

light velocity

Planck constant

non-quantum

quantum

background image

Kinematics

Fundamental quantities

Displacement and trajectory

Velocity and acceleration

Examples of motion

background image

Fundamental quantities

Scalar

– mass, time, temperature

Vectors

– velocity, acceleration, force

Vector r and its components

z

y

x

r

r

r

r

+

+

=

2

2

2

z

y

x

r

r

r

r

+

+

=

background image

Displacement and trajectory

Motion

- change in relative position among bodies versus time

reference system

Material point :

mass with negligible sizes (volume)

Trajectory –
all points corresponding
to the position of the point P

y

x

z

0

trajectory

P(x,y,z)

r(t)

Motion is not absolute but relative !

In the rectangular (Cartesian)
coordinate system:

)

(

)

(

)

(

t

z

z

t

y

y

t

x

x

=

=

=

Position of
the point P

r

- vector of displacement

)

(t

r

r =

background image

Average velocity

t

s

t

t

s

s

=

=

1

2

1

2

v

m/s

)

v

(

=

Rectilinear motion of a material point

Displacement – coordinate

s = s(t)

– function of time

t

0

Velocity

dt

ds

t

s

t

=

=

0

lim

v

Derivative of the displacement
with respect to time

0

s

1

s

2

A

1

A

2

t

1

t

2

B

1

B

2

B

1

B

2

= ∆s in ∆t

∆s

background image

dt

s

t

t

=

2

1

v

Definite integral of time over time

Integration of a function

dx

x

dF

x

f

)

(

)

(

=

Indefinite integral of the function

f(x):

+

=

C

x

F

dx

x

f

)

(

)

(

Definite integral of the

function f(x)

in the limits x

1

i x

2

:

)

(

)

(

)

(

1

2

2

1

x

F

x

F

dx

x

f

x

x

=

Example:

C

x

n

a

dx

ax

n

n

+

+

=

+

1

1

background image

Rectilinear uniform motion

V = const

Initial condition: t = 0, s = 0 ⇒

s = vt

Rectilinear variable motion

V – dependent on time: in the moments t

1

(t

2

) – the velocity v

1

(v

2

)

Average acceleration

t

v

=

a

2

/

)

(

s

m

a =

Acceleration

dt

v

t

v

lim

0

d

a

t

=

=

2

2

)

(

dt

s

d

dt

ds

dt

d

a

=

=

=

2

1

)

(

v

t

t

dt

t

a

background image

Rectilinear motion with constant acceleration

a

a

a

a

= const

a

a

a

a

>

0 – accelerated motion

a

a

a

a

<

0 - retarded motion

at

adt

t

=

=

0

v

Velocity changes

Initial condition:

t = 0, v = v

0

Velocity

v

:

v – v

0

=

a

a

a

a

t

v = v

0

+

a

a

a

a

t

Displacement:

2

0

0

0

0

2

1

v

)

v

(

v(t)

at

t

dt

at

dt

s

t

t

+

=

+

=

=

or:

2

0

0

2

1

v

at

t

s

s

s

+

=

=

Initial condition: t = 0, s = s

0

2

0

0

2

1

v

at

t

s

s

+

+

=

background image

Graphical presentation of the rectilinear motion

a

a

a

a

=0

a

t

Uniform motion

v = const

v

t

s = vt

s

t

Uniformly accelerated motion

a

a

a

a

>0

a

t

a

a

a

a

<0

a

a

a

a

>0

s

t

a

a

a

a

<0

tangent slope – v(t)

v

t

a

a

a

a

<0

v

0

a

a

a

a

>0

path - area under

the curve v(t)

background image

Velocity as a vector

x

y

r(t)

Curvilinear motion

dt

r

d

t

r

t

r

v

r

=

=

0

lim

v

Velocity

Vektor

v

is always tangent to

the trajectory

dt

dz

dt

dy

dt

dx

=

=

=

z

y

x

v

v

v

Average velocity

=

s

m

t

r

average

v

r

V

r(t+

t) =

r(t)

+

r

P

background image

Acceleration as a vector

2

2

0

v

v

lim

dt

r

d

dt

d

t

a

t

r

r

r

r

=

=

=

Acceleration

2

2

z

2

2

y

2

2

x

dt

v

dt

v

dt

v

dt

z

d

d

a

dt

y

d

d

a

dt

x

d

d

a

z

y

x

=

=

=

=

=

=

Average acceleration

=

2

v

s

m

t

a

average

1

v

2

v

2

v

v

A

V

a

a

t

a

n

R

dt

d

a

t

v

=

R

a

n

2

v

=

n

t

a

a

a

+

=

background image

Motion in a circle

Angular path

α

α

α

α

(rad)

Linear path

s =

α

α

α

α

r

X

y

α

α

α

α

P

0

x

Y

r

dt

d

r

dt

r

d

α

α

=

=

=

)

(

dt

ds

v

ω

r

=

v

Angular velocity

dt

d

α

ω

=

s

rad

=

)

(

ω

Angular

acceleration

2

2

dt

d

dt

d

α

ω

ε

=

=

2

)

(

s

rad

=

ε

Period of motion
T

– time of a path

α

= 2π

When ω = const then

T = 2π

π

π

π

/ ω

ω

ω

ω

herc

s

f

=

−1

)

(

Hz

Frequency f

number of
revolution per
unit time

T

f

1

=

hertz (Hz)


Wyszukiwarka

Podobne podstrony:
ZMPST 01 Introduction
Lecture 01 Introduction
01 Introduction
Lab 01 Introductin to UNIX System
01 Introductionid 2824 Nieznany (2)
01 Introducere
01 introduction
ZMPST 01 Introduction
01 Introduction
01 introduction
Boellmann Suite gothique 01 introduction choral
01 Introduction
01 Introduction to Chassis Dynamics
01 01 Introduction

więcej podobnych podstron