LaRose, Eastin, & Gregg/Reformulating the Internet Paradox: Social ...
http://www.behavior.net/JOB/v1n2/paradox.html
1 z 17
2008-02-07 15:04
Reformulating the Internet Paradox:
Social Cognitive Explanations of Internet Use and Depression
by
Robert LaRose, Ph.D.; Matthew S. Eastin, and Jennifer Gregg
LaRose, R., Eastin, M. S., Gregg, J. (2001). Reformulating the Internet paradox: Social cognitive explanations of Internet
use and depression. Journal of Online Behavior, 1 (2). Retrieved <date> from the World Wide Web:
http://www.behavior.net/JOB/v1n1/paradox.html
Abstract
The Internet Paradox study (Kraut et al., 1998) found evidence of a causal link between Internet use
and depression, but it may have been specific to novice Internet users. The relationship between
Internet use, social support and depression was reformulated drawing on social cognitive theory
(Bandura, 1997) to account for the possible influence of self-efficacy, Internet-related stress, and
perceived social support. A path analysis revealed a link between Internet use and depression, but
one mediated by self-efficacy and the expectation of encountering stressful situations on the
Internet. A path also was found linking Internet use to decreased depression through the use of
e-mail exchanges with known associates to obtain social support.
The Paradoxical Internet Paradox
The Internet paradox study (Kraut et al., 1998), part of the HomeNet project at Carnegie Mellon
University, provided important preliminary evidence of the possible harmful effects of Internet use.
The paradox was how a "social technology" used primarily for interpersonal interaction could
increase social isolation and thereby decrease psychological well-being among its users. Internet
use was associated with increases in loneliness and depression and tended to increase stress in a
sample of 169 persons who received free computers and Internet access over a period of one to two
years. These results seemed paradoxical indeed to those--the researchers and their sponsors
among them--who viewed the Internet as a vibrant new means of social interaction through the use
of e-mail, newsgroups, and chatrooms. To explain the paradox, the researchers reasoned that
superficial relationships (weak ties) formed online displaced meaningful (strong tie) relationships in
the real world.
The results were also paradoxical in the face of competing, if inconsistent, evidence of the
positive social impacts of Internet use. Wynn and Katz (1997) emphasized the inherent
"situatedness" of Internet use in a broader social context that makes it impossible to completely
separate the virtual world online from the real world off-line. Ethnographic research suggests that
online communication supplements existing real world relationships rather than displaces them
(Hamman, 1999). In a review of ethnographic and anecdotal evidence about Internet communities,
Wellman and Gulia (1999) concluded that online relationships can be strong and intimate and may
strengthen real world relationships as much as diminish them. They attributed concerns about
negative effects to an overly idealized view of real world social interaction. Superficial relationships
are found there, too.
Surveys (Katz & Aspden, 1997; Parks & Floyd, 1996; Parks & Roberts, 1998) indicated that the
Internet spawned highly developed online relationships, many of which led to real world social
contacts, suggesting that social isolation might decrease with greater Internet use. Online
relationships equal off-line ones that fulfill similar roles in terms of their breadth, depth, and
development of private communication codes, despite the fact that online relationships have fewer
weekly contact hours and shorter histories than offline relationships (Parks & Roberts, 1998).
Scherer (1997) found no differences in self-perceptions of sociability between college students who
LaRose, Eastin, & Gregg/Reformulating the Internet Paradox: Social ...
http://www.behavior.net/JOB/v1n2/paradox.html
2 z 17
2008-02-07 15:04
were dependent on the Internet (i.e., exhibited 3 or more symptoms of excessive Internet use
paralleling those of substance abuse) and those who were not, even though the dependent users
utilized newsgroups, chat, and multi-user environments more, and socialized less face-to-face. Katz
and Aspden (1997) concluded from a national survey of 1500 respondents that Internet use had no
impact on off-line social participation.
NOTE 1
In a Pew Research Center poll (Pew Research Center,
2000) most Internet users said that e-mail had improved their connections to family and friends, and
those perceptions increased the longer users had been on the Internet and the more they used it.
There were also fewer socially isolated individuals among Internet users than non-users, and
Internet users were more likely to have recent social contacts and sources of social support.
NOTE 2
Computer mediated communication research has demonstrated that even media lacking in
nonverbal cues, including text-based e-mail on the Internet, may foster supportive relationships over
time (see for review Walther, 1996).
In support of the Internet paradox hypothesis, other scholars have warned about the potential
harmful effects of online interpersonal communication, blaming online technology for disrupting real
world networks (Heim, 1993; Stoll, 1995) and creating a "lonely crowd" in cyberspace (Kroker &
Weinstein, 1994). Turkle (1995, p. 235) pointed out the absurdity of the notion that community can
arise from among people sitting alone, typing messages to virtual friends. Nie and Erbring (2000)
found that as Internet use increased, users were more likely to report a decrease in time spent
talking to family and friends and attending social events. Online relationships may develop less
interdependence, understanding, and commitment than comparable off-line ones do (Parks &
Roberts, 1998).
The latter studies bolster the post hoc explanation that Kraut et al. (1998) applied to their findings,
that superficial online relationships diminish close real-world ties, reducing social support and
increasing depression (although no significant effect on social support was actually found; see
Walther & Reid, 2000). However, all these studies make the possibly mistaken assumption that
face-to-face relationships are inherently superior to online relationships (Hamman, 1999; Parks &
Roberts, 1998) and neglect the possibility of hyperpersonal online interactions that may be more
intimate than their offline counterparts (Walther, 1996).
Aside from Turkle's ethnographic case studies (which are contradicted by Hamman's, 1999), the
hypothesis that online relationships diminish real world relationships has sparse empirical support.
Riphagen and Kanfer (1997) found that e-mail users had more distance relationships than non-users
and that the total number of relationships was about equal, suggesting that local (presumably
strong) ties suffered as a result of having e-mail. However, their survey methodology could not rule
out the competing explanation that people who had strong long distance ties to maintain were more
likely to adopt e-mail. Nie and Erbring (2000) did not account for the possibility that users may have
substituted e-mail contacts for face-to-face or telephone communication, and are contradicted by
another survey (Pew Research Center, 2000) in which Internet users were more likely to report
recent social contacts and the availability of social support than non-users. Parks and Floyd (1996)
found that online communication frequently covered issues that went beyond the stated boundaries
of the Internet communities in which it originated, a key distinguishing characteristic of strong social
ties. And, a survey of German Internet users found a positive relation between Internet use and the
number of friends one had (Döring, 1996).
NOTE 3
Historically, the introduction of new social technology was not linked to increased social isolation.
Kraut et al. (1998) viewed the telephone as a means of providing real world support when e-mail
failed for their subjects (p. 1030). However, the telephone is a social technology itself, and one of its
central functions is to provide an enjoyable source of social interaction (LaRose, 1999). In
contemporary society, Wellman (1996) concluded that the phone was used more to maintain local
relationships than to supplant them with distant ones.
The Role of Experience
The amount of experience with the Internet may be a pivotal factor in interpreting the competing
findings. The respondents in the Internet Paradox study were all novice users, introduced to the
Internet by the researchers’ treatment, and all therefore had less than two years’ experience on line.
LaRose, Eastin, & Gregg/Reformulating the Internet Paradox: Social ...
http://www.behavior.net/JOB/v1n2/paradox.html
3 z 17
2008-02-07 15:04
In other research, veteran users with over three years on line were more likely to observe
improvements in social interactions as a result of Internet use than were novice users with less than
six months’ experience (Pew Research Center, 2000). They also were more likely to state that they
had someone to turn to when they needed help. Parks and Floyd’s (1996) respondents tended to be
long-term users with over two years of experience with online communication, and typically formed
their online relationships a year or more after joining a community. New users are less comfortable
using the Internet and less satisfied with their Internet skills (GVU, 1999, question 101, question
102). Over time, users of computer mediated communication are able to compensate for the relative
lack of social cues available in e-mail (Walther, 1996). Thus, novices may be simply less competent
at using the medium to obtain social support.
Novice Internet users may also experience new sources of stress from technical problems
encountered when using the Internet (Charney & Greenberg, in press; GVU, 1999, question 11).
That stress may contribute to depression and negate the benefits of any social support received on
line. Populations that include experienced users may therefore yield differing results from Kraut et al.
(1998).
The subjects in Kraut et al.’s research may also have had better access to social support from
face-to-face sources than is the norm in a highly mobile society. Part of the sample was recruited
from members of community groups, a population that might be well integrated into local community
life and to have large numbers of geographically proximate associates (Shapiro, 1999).
Respondents who moved or went away to college during the period of the study were dropped from
the sample and as much as a third of the original panel was apparently lost for these reasons (Kraut
et al., 1998, p. 1021). Thus, there is still the possibly that individuals who are mobile, and who must
rely on social technologies to maintain relationships, may use the Internet to obtain social support
and relieve depression.
Finally, the HomeNet participants had low levels of depression overall (Rierdan, 1999) and so
may not have been in any great need of social support. Other, more mobile populations that are cut
off from stable face-to-face relationships, and with higher levels of depression and stress, may
derive more benefit from online interactions than those with stable local community ties and normal
levels of depression. According to the buffering hypothesis (Cobb, 1976; Cohen & Wills, 1985),
social support protects psychological well-being primarily under conditions of high stress.
In searching for new explanations of the relationship between Internet use and psychological
well-being an overarching theoretical framework may be desirable. Kraut et al. (1998) combined
disparate constructs from sociology (e.g. strong vs weak social ties), various schools of psychology
(e.g. personality constructs such as extraversion, and social psychological variables such as
loneliness, social support and depression) and media studies (for the relationship between media
exposure and social involvement). The current research reformulates the Internet paradox in terms
of a comprehensive theory of human behavior that better accounts for users’ experience levels and
for the possibility of obtaining social support from distant associates, among populations with a
greater need for such support.
Social Cognitive Explanations of the Internet Paradox
Social cognitive theory provides a comprehensive theoretical framework for understanding human
behavior, social interaction and psychological well-being (Bandura, 1986; 1989; 1997) with which we
propose to reformulate the relationship between Internet use and depression. The theory recognizes
a variety of mechanisms that govern human behavior, including enactive learning (learning through
one’s own experience), vicarious learning (learning by observing others), self-regulation (the practice
of self control) and self-efficacy (or the belief in one's ability to perform a task successfully). The
self-efficacy mechanism (Bandura, 1977; 1982; 1997) pertains since it describes the cognitive
processes that relate the acquisition to the performance of new behaviors. This concept may explain
the implications of the transition from novice to veteran Internet user for psychological well-being.
Kraut et al. (1998) raised the self-efficacy issue in mentioning the possible impact of Internet use
on self-esteem. But they dismissed it on the grounds that they were engaged in a study of social
behavior while self-esteem was deemed a separate issue. Although self-esteem (the judgment of
LaRose, Eastin, & Gregg/Reformulating the Internet Paradox: Social ...
http://www.behavior.net/JOB/v1n2/paradox.html
4 z 17
2008-02-07 15:04
one's own self-worth) is distinct from self-efficacy (the judgment of one's own personal capacities),
the two terms are often used interchangeably (Bandura, 1997), and indeed Kraut et al. were
evidently being dismissive of self-efficacy ("self esteem related to computer skill learning," p. 1029).
However, within social cognitive theory, self-efficacy is an important mediating factor between social
behavior and depression. Thus, from the perspective of social cognitive theory, self-efficacy is a
pivotal variable that implies a different causal mechanism, and was overlooked.
Whereas Kraut et al. found that Internet use caused depression, which was also directly linked to
stress, the sociocognitive view differentiates the relationships among these effects. According to
Bandura (1997, p. 153), depression results from "the inability to influence events and social
conditions that significantly affect one's life," while stress is an emotional state generated by threats
and taxing demands (p. 262). Adversity leads to depression when people create a depressing social
environment for themselves, provoking social rejection through their own alienating behavior.
Self-efficacy may mediate the effect of both stress and social support on depression. Cutrona and
Troutman (1986) presented a path analysis of the relationship among these variables, in which
stress reduced self-efficacy while social support increased it and in which self-efficacy then directly
reduced depression. Kraut et al. (1998) did include social support in their model, but as a general
controlling variable, while social cognitive theory assigns it a more direct role, acting through
self-efficacy, in the genesis of depression.
In the Internet paradox study, general life stress was treated as an external control factor. The
Internet itself, however, is a source of stressful stimuli, and perhaps a very relevant one when
investigating the link between its use and psychological well-being, particularly among novice users.
For instance, most Internet users in the GVU surveys reported problems with slow downloads and
unwanted e-mail (GVU, 1999, question 11). For those who depend upon the Internet to complete
important life activities, the stress resulting from such problems could be a significant source of
depression. Indeed, if the HomeNet subjects felt compelled to persist in Internet use as part of their
arrangement for the free equipment and Internet service they received, a new competing
explanation for the link between Internet use and depression in the Kraut et al. (1998) study
emerges: As Internet use increased among these novice users, Internet stress also increased,
leading in turn to depression. Perhaps the novice users in the HomeNet study never achieved the
levels of self-efficacy required to control Internet-related stress.
Hypotheses
From this perspective we may reformulate the relationship between Internet usage and
depression, adding the intervening variable of self-efficacy. We propose two separate, but
interrelated, mechanisms describing the relationship between Internet use and depression. One
focuses on stress-inducing interactions with the Internet that contribute to depression while the other
emphasizes the use of the Internet to obtain social support that reduces depression.
Novice users experience stressful interactions with the Internet that may trigger depression when
they feel unable to control important events that depend upon successful use of the Internet. This is
especially likely in cases where the stressful Internet events are beyond volitional control (such as
encountering a busy signal when establishing a network connection, or encountering 404 errors or
slow downloads on the Web). However, users gradually gain confidence in their ability to control the
sources of Internet stress as they learn to dial alternate access numbers, set their dialers to autodial,
or avoid the times of day when busy signals are most common, for example. So, the effect of
Internet stress on depression should be mediated by Internet self-efficacy, the belief in one’s ability
to use the Internet successfully. Following Cutrona and Troutman (1986), we hypothesize that stress
reduces self-efficacy, leading to depression, while social support increases self-efficacy. An
important antecedent of self-efficacy is previous experience (Bandura, 1997), so the amount of prior
Internet experience should act on depression through self-efficacy.
H
1
: Internet usage is positively related to depression as an inverse function of Internet
self efficacy.
H
1a
: Internet self-efficacy reduces the effect of Internet stress on depression.
H
1b
: Self-efficacy is positively related to social support and prior Internet experience.
LaRose, Eastin, & Gregg/Reformulating the Internet Paradox: Social ...
http://www.behavior.net/JOB/v1n2/paradox.html
5 z 17
2008-02-07 15:04
However, Cutrona and Troutman (1986) found evidence (mirrored by the Internet Paradox study)
of a direct link between stress and depression that was not mediated through self-efficacy. General
life stress may also be related to situation-specific forms of stress (Kanner, Coyne, Schaefer, &
Lazarus, 1981; Lu, 1994), although there is no indication in the literature of the direction of the
relationship. It was initially assumed that general life stress would intensify Internet stress by
creating a general feeling of "being hassled" and so precede it causally. Social support may also
have a direct, inverse relationship to depression as well as a buffering effect (Cohen & Wills, 1985;
Hashimoto et al., 1999). A direct effect from social support on depression, not found by Kraut et al.
(1998), may be expected in populations with higher levels of depression than that of the Paradox
study, since depressed people may be more likely to need social support.
H
1c
: General life stress is positively related to depression both directly and as a function
of Internet stress and self-efficacy.
H
1d
: Social support is negatively related to depression
A second mechanism may decrease depression: Profligate Internet users might obtain social
support from distant associates, and thereby either directly relieve depression, or buffer the effect of
stress on depression through self-efficacy. Electronic mail would seem to be the crucial Internet
application in this regard. E-mail was the single most frequent Internet activity in Kraut et al. (1999),
a finding confirmed in national surveys (Katz & Aspden, 1997; Pew Research Center, 2000). Kraut
et al. (1998) conducted (unreported) analyses that showed a positive relationship between e-mail
use and depression (p.1029). However, their approach to measuring e-mail use may have obscured
the relationship. They used computer logs to count the actual number of e-mail messages sent and
received, and excluded only those messages in which the respondent was not explicitly named, as
these were presumably from mass distribution lists (i.e. listservs) that provide information rather than
social support. They thus may have counted a great deal of unwanted e-mail either from unsolicited
commercial "spammers" or from individuals with whom users might not wish to communicate (e.g.,
complete strangers or bothersome acquaintances). Since unwanted e-mail is a potential source of
Internet stress and the receipt of such mail is likely to increase with use--especially among novice
users who haven't learned to control it--spam emerges as a competing explanation for the Internet
paradox effect.
However, electronic communication with people we know should enhance social support. Kraut et
al. (1998) noted that socially isolated individuals might become less depressed as the result of social
contacts made on the Internet. College students are one such lonely and depressed population
(Rich & Scovel, 1987) for which social support buffers the effects of stress on depression (Cohen et
al., 1986) and for which the Internet paradox might be stood on its head. Indeed, the situation of
college students exposes the questionable assumption of equating distant ties with weak ones. For
the lonely student, the most meaningful sources of social support may be available only by using
social technologies to maintain distant ties with family and former high school classmates.
H
2
: Internet use is negatively related to depression among college students as a
function of e-mailing known associates and social support.
However, the ability to obtain social support may itself be an acquired skill that takes some years
of Internet experience to master (Pew Research Center, 2000), therefore:
H
2a
: Prior Internet experience is positively related to social support.
The hypothesized relationships among these variables are summarized in a path model shown in
Figure 1.
Figure 1: Hypothesized Path Model
LaRose, Eastin, & Gregg/Reformulating the Internet Paradox: Social ...
http://www.behavior.net/JOB/v1n2/paradox.html
6 z 17
2008-02-07 15:04
Research Methods
Subjects
Respondents were 171 students enrolled in an introductory telecommunication class at a large
midwestern university in the USA. The sample was 59
percent male and 39 percent female.
Thirty-five percent of the respondents were freshmen; 22 percent, sophomores;18 percent, juniors;
and the rest, seniors. The mean age was 21 years old, (SD = 5.00) . Respondents were offered
extra credit for their participation in the study,while alternate extra credit assignments involving
participation in other research projects with comparable time commitments were available at the
students' options.
Procedure
Questionnaires were distributed over two successive weeks so that students who were not
present in class during the first week would have an opportunity to participate in the second week.
Respondents completed questionnaires only once. Respondents picked up the questionnaires and
returned them two days later. They also kept a diary of their Internet use during that time (results not
reported here).
Measures
Measures of social involvement and psychological well-being previously used by Kraut et al.
(1998) were included in the present study and reliability indices (Cronbach
α) were computed. In
each case, mean values were substituted for missing data on individual scale items. The depression
measure included all 20 of the items from the Center for Epidemiologic Studies Depression (CES-D)
scale (Radloff, 1977,
α = .91), scored as 0=Rarely/None, 1=Some/Little, 2=Occasionally/Moderate,
3=Most/All. Positively-worded items (e.g., "I enjoyed life") were reflected. A 57-item scale was
employed including 54 of 156 items from Kanner et al.'s (1981) Hassles Scale plus three
(non-Internet specific) computer hassles items (lost computer files, caught a computer virus,
computer hardware failure;
α = .93). The same 16 (out of 40) items from the Interpersonal Support
Evaluation List (ISEL; Cohen, et al, 1985,
α = .81) used in the previous study were also included.
LaRose, Eastin, & Gregg/Reformulating the Internet Paradox: Social ...
http://www.behavior.net/JOB/v1n2/paradox.html
7 z 17
2008-02-07 15:04
See
Appendix
for notes on these and other scales.
Eastin and LaRose's (2000) Internet Self-efficacy scale was used. The eight-item measure (e.g.,
"I feel confident using the Internet to gather data") was highly reliable (
α = .93). The subjects rated
their efficacy beliefs on a seven-point scale ranging from 7 for strongly agree to 1 for strongly
disagree.
A four-item measure of Internet stress (
α = .61 ) was developed from previous work on Internet
frustrations (Charney & Greenberg, in press) and from GVU research on problems using the Web
(GVU, 1999). Respondents were asked to rate their likelihood of experiencing each type of stressful
Internet behavior (e.g. have trouble getting on the Internet, have trouble finding what I am looking
for, have my computer freeze up, and get blocked by password protection) on a seven-point scale
that ranged from 7 for very likely to 1 for very unlikely.
Internet usage was an additive index of four self-reported items (
α = .82).
E-mail use (
α = .67) was the sum of two items measuring the number of e-mail messages sent (M
= 2.60, SD = .86) and the number received (M = 3.20, SD = .94) from people known to the
respondent in the preceding two days. They were coded 1 for no messages, 2 for one to five
messages, 3 for six to ten, 4 for eleven to twenty-five, and 5 for twenty-six messages or more.
Analysis
Path analytic techniques were used to analyze the data (McClendon, 1994). Path analysis allows
the researcher to specify and test the pattern and direction of causal relationships among the
variables where mediated effects are predicted. Kraut et al. (1998) used path analysis to analyze the
results of a time series study in which the dependent variable was observed at two points in time,
allowing them to make interpretations about the direction of causation (i.e., that Internet use causes
depression rather than depressed people use the Internet more). Path analysis may also be used
when observations are performed at a single point in time. Here, path analysis allowed us to test all
proposed relationships within the theoretical model. The results of Kraut et al. (1998) gave us
confidence about the direction of causation from Internet usage to depression, but we tested
competing models of the relationships among intervening variables.
The present study was a cross-sectional survey so we could not replicate the longitudinal controls
for depression performed by Kraut et al. (1998). Consistent with our theoretical approach, we did not
use demographic variables (e.g. gender) as controls. Within social cognitive theory, the explanatory
power of such variables is subsumed by social cognitive constructs.
Results
A matrix showing the Pearson product-moment correlation coefficients between variables is
presented in Table 1, with means and standard deviations for each variable. All significant
correlations reported are based on two-tailed tests. Overall, the present sample was significantly
more depressed than both Kraut et al.’s (1998), t = 4.37, p < .001 (two-tailed), and the general
population sample used to validate the CES-D originally (Radloff, 1977), t = 10.27, p < .001
(two-tailed), but less so than members of the general population who believed they "need help" in
the validation study, t = -4.21, p < .001. The scores on the CES-D ranged between 0 and 55, against
a theoretical range of 0 to 60. Thirty-seven percent of the respondents scored at or above the
arbitrary cut-off point of 16 that distinguishes moderately from clinically depressed people. Internet
usage scores ranged from the minimum possible score of 3 to the maximum possible 24. The
Internet self-efficacy scores also covered the entire possible range of 8 to 56 as did Internet stress
(4 to 28) and e-mail usage scores (2 to 10). Internet experience ranged from 2 to 5 (no respondent
reported less than two months’ experience with the Internet, which was scored as 1) and social
support (ISEL) scores all fell between 4 (0 was the minimum) and 16 (the maximum possible)
Table 1: Pearson Product Moment Correlation Coefficients
LaRose, Eastin, & Gregg/Reformulating the Internet Paradox: Social ...
http://www.behavior.net/JOB/v1n2/paradox.html
8 z 17
2008-02-07 15:04
Variable
1
2
3
4
5
6
7
Mean SD
1. Internet Use
14.21 4.31
2. Depression (CES-D)
-.02
15.74
9.82
3. Internet Self-Efficacy
.65**
-.11
36.11
11.76
4. General Stress (Hassles) -.03 .43** -.04
85.02
19.61
5. Social Support (ISEL)
-.04
-.59**
.09
-.36**
13.50
2.84
6. Internet Stress
-.18*
.23**
-.25**
.29**
-.20**
14.74
4.77
7. Internet Experience
.22**
-.18*
.33**
-.11
.15
-.12
4.66
.67
8. E-mail Use
.20** -.07 .15* .10 .22** -.06 .07
8.53
2.19
** p < .001; * p < .05
Our initial model in which Internet stress was linked to depression through self-efficacy was not
supported; a goodness of fit test indicated that the data did not fit the model,
χ
2
(14) = 23.24, p <
.05. Alternative models were evaluated for their statistical goodness of fit and also their
correspondence to theoretically justifiable relationships within the social cognitive paradigm. A
revised model is shown in Figure 2, with the significant paths (p < .05) indicated. In it, Internet use
was related to depression through two routes: first, Internet usage is related to depression through
self-efficacy (ß = .59) and then through Internet stress (ß = -.25). Internet stress was in turn related
to hassles (ß = .23) and hassles to depression (ß = .25). Prior Internet experience was related to
self-efficacy as predicted (ß = .20). The expected relationship between prior experience and social
support fell slightly below the level of significance used in this study (ß = .12, p = .110). The
hypothesized link between social support and self-efficacy was not confirmed.
Overall, Internet use was positively related to e-mail use (ß = .31), which in turn was positively
related to social support (ß = .20). Social support had a significant and negative direct relationship to
depression (ß = -.50) and also acted on depression through hassles (ß = -.31).
Figure 2: Final Path Model
Note: * indicates significance at the .05 level, ** at the .01 level. Only statistically significant
LaRose, Eastin, & Gregg/Reformulating the Internet Paradox: Social ...
http://www.behavior.net/JOB/v1n2/paradox.html
9 z 17
2008-02-07 15:04
links (p < .05) are shown. Path coefficients are standardized betas (ß).
The results can be interpreted to indicate that the amount of Internet use was related to
depression through two different mechanisms. Usage as well as prior Internet experience increased
self-efficacy, which in turn decreased stress encountered online, a contributor to general life hassles
related to depression, the central path in Figure 2. In the second mechanism, represented in the top
part of Figure 2, as Internet use increased so did email sent to known associates, which increased
social support, and in turn decreased depression. In other words, Internet use decreased depression
through the use of electronic mail to obtain social support. Social support also reduced depression
by acting on general life stress (hassles), and general stress increases depression. That means that
social support can partially reverse the effects of Internet stress on general life stress and so on
depression. But Internet usage can also increase depression by creating a new source of Internet
stress, although that stress may be controlled by the development of Internet self-efficacy.
Given the substantial path coefficients and a favorable goodness of fit results,
χ
2
(18) = 14.44, p =
.700, it was concluded that the data fit this model. The variance in depression explained by this
model was 37 percent, which can be characterized as a large effect (Cohen, 1988). Kraut et al.'s
(1998) results had an R
2
of .19, a moderate effect size.
In both studies the direct relationship between Internet usage and depression was low (r = -.02 in
the present study, r = .18 in Kraut et al.). The reconstructed correlations, obtained by multiplying the
path coefficients found along each path together, were -.008 for the path from Internet usage to
depression through Internet self efficacy and -.031 for the path through social support. This suggests
that the social support mechanism shown in the upper part of Figure 2 is more powerful than the
self-efficacy mechanism in the lower path. However, although the relationships were significant, as
indicated by statistically significant path coefficients, the magnitude of the effects on depression
were slight across both paths.
The importance of prior Internet experience was further explored by comparing the Internet
self-efficacy and Internet Stress scores of those with high and low levels of online experience. There
was a significant difference, t (39, 131) = 3.60, p < .001 ( two-tailed), in self-efficacy between those
with more than two years' prior experience with the Internet (M = 37.80, SD = 11.32) and those with
less than two years (M = 30.30, SD = 11.63). The amount of prior Internet experience was related to
perceptions of Internet Stress somewhat differently: Those with the very least experience--a year or
less--had the greatest Stress (M = 16.82, SD = 3.59) compared to those with more than one year's
experience (M = 14.56, SD = 3.67), t (17, 153) = -2.37, p < .05.
Discussion
We found support for two propositions that counter the more negative conclusions of Kraut et al.'s
(1998) Internet Paradox study. First, Internet communication with people we know can alleviate
depression, at least among socially isolated and moderately depressed populations, such as college
students, who may tend to rely on social technologies to obtain social support. Second, stressful
interactions with the Internet itself, rather than inadequate interactions with other people through the
Internet, may lead to depression, but self-efficacy reverses the effect of that stress.
The latter findings pose a rival explanation for the Internet paradox, one first suggested by
Hamman (1999). The novice users that Kraut et al. studied may never have achieved the necessary
degree of self-efficacy needed to cope with the new sources of stress that the Internet introduced
into their lives. All of Kraut et al.’s subjects had less than two years of experience at the time of the
post-test.
Self-efficacy could be a third variable that accounts for concomitant increases in depression and
in Internet use in Kraut et al. (1998). Inefficacious users in the HomeNet study may have spent more
time on line than efficacious users as a consequence of their poor performance. It may have taken
them longer to find what they were looking for, or they may have wasted time trying to resolve online
problems rather than engaging in productive tasks. And the stress they encountered in the process
made them more depressed.
LaRose, Eastin, & Gregg/Reformulating the Internet Paradox: Social ...
http://www.behavior.net/JOB/v1n2/paradox.html
10 z 17
2008-02-07 15:04
Contrary to Kraut et al. (1998) the present research established a relationship between Internet
usage and social support. Kraut et al. speculated that social support provided an explanatory link in
the Internet/depression connection, reasoning that when people substitute shallow online
relationships for supportive offline relationships, social support declines, causing depression. No
significant effects due to social support were found in their study, however. The current results do
show a relationship between Internet usage and social support, presumably through the exchange of
e-mail with known associates. Only marginal support was found for the proposed mechanism that
users gradually learn how to obtain social support through the Internet. The relationship of Internet
experience to social support may also be mediated by self-efficacy relating to social support (cf.
Holahan & Holahan, 1987a), or confidence in one’s ability to obtain social support online.
The present results tend to rule out another competing hypothesis about the role of social support
in the Internet paradox. Shapiro (1999) speculated that young college students in the HomeNet
sample experienced shrinking social networks as they made the transition to college and turned,
unsuccessfully, to the Internet to fill the void (although the college students who left home were in
fact dropped from the sample). In the present research we found evidence of a relationship between
Internet use and a reduction in depression among college students. They thus may have used the
Internet to obtain social support rather than to replace it. This view is consistent with a national
survey in which Internet users reportedly improved their social relations (Pew Research Center,
2000) and with Wellman and Gulia’s (1999) evidence that the Internet is used to maintain real-world
relationships.
Self-efficacy did not mediate depression in exactly the manner hypothesized, preceding Internet
stress and hassles rather than following them. And, Internet stress preceded general life
stress/hassles rather than following it, as hypothesized. However, it is possible to interpret this result
within social cognitive theory: Self-efficacy improved performance (Bandura, 1982; 1997), and as
performance improved users were less likely to encounter stressful negative outcomes. In other
words, self-efficacious Internet users were less likely to make mistakes that were sources of stress
when using the Internet and were better able to work around problems that were not of their own
making. They therefore correctly perceived a reduced likelihood of encountering stressful situations
on the Internet. Successful Internet use is perhaps such a critical domain of behavior for college
students that stressors in that domain may contribute to a general feeling of "being hassled" and so
to depression.
More puzzling was the failure of social support to enter into the relationship between Internet use,
self-efficacy and depression. One possibility is that self-efficacy may reduce stress without mediation
by social support, such as when users obtain help from online FAQ files or by gradually learning to
solve their own problems. Self-efficacy should act in concert with social support, though, when
novice Internet users obtain technical help or moral support from others for their Internet problems.
In the present study, students completing Internet assignments could get help from the instructor,
her teaching assistants, or peer tutors. However, the ISEL (Cohen et al., 1985) does not address
specific support of this nature, only general social support.
The ISEL used here and in the original Internet Paradox study may inadequately reflect online
social support generally. It also does not correspond well to a sociocognitive conceptualization of
social support as an overall rewarding social environment (Bandura, 1997; see Silverman, 1999, for
anecdotal examples of social support in an Internet newsgroup that can be understood in
sociocognitive terms). In this view, significant social support might come from weak ties with familiar
strangers, unknown neighbors and "urban agents" (e.g. service role occupants such as teachers,
bartenders, and perhaps online help attendants) even in mediated channels with few social cues
(Adelman et al., 1987), sources that avoid impositions on close relationships (Walther & Boyd, in
press). Not all social support is supportive; there are negative instances that detract from
psychological well-being (Rook, 1984). The ISEL asks about the availability of people who can
provide supportive but not specifically whether positive support is actually obtained. One of its
subscales stresses tangible forms of support that can perhaps only be provided by physically
proximate real-world associates (e.g., moving furniture) and it is that very dimension that may best
buffer the effects of stressful life events (Cohen & Wills, 1985). The ISEL lacks an attachment
dimension (intimate relationships providing security and safety) found in the Social Provisions Scale
LaRose, Eastin, & Gregg/Reformulating the Internet Paradox: Social ...
http://www.behavior.net/JOB/v1n2/paradox.html
11 z 17
2008-02-07 15:04
(SPS; Cutrona & Russell, 1987) that measured social support in the study from which we
hypothesized the social support to self–efficacy relationship (Cutrona & Troutman, 1986).
NOTE 4
The
SPS or another more suitable measure of social support might produce the hypothesized
relationship.
However, other commonly used measures of social support also limit responses to small networks
of significant others (Norbeck et al., 1981; Oritt et al., 1985; Sarason et al., 1983), stress tangible
forms of support that require geographic proximity (Barrera et al., 1981; Cutrona & Russell, 1987) or
emphasize the availability of support as opposed to its actual provision (Cutrona & Russell, 1987).
Affective reactions to (Norbeck et al., 1981) or satisfaction with the social support received (Oritt et
al., 1985; Sarason et al., 1983) come closer to our conceptual definition, but reflect only the support
forthcoming from a short list of close associates that might tend to exclude exclusively online
relationships.
Finally, the CES-D may not be a valid measure of depression but rather an indicator of general
psychological stress (Rierdan, 1999). On that basis, the initially hypothesized relationship among
social support, stress and depression might still be observed by introducing a different measure of
depression into the model.
Limitations
A limitation of our study is that we relied upon self-reports of Internet behavior. However, our
research showed a high (r = .65, p < .001, two-tailed) correlation between Internet usage recorded in
a contemporaneous diary and retrospective recall of the same behavior. This is consistent with
research comparing self- reports of computer system activity with electronic log data (Deane, Podd,
& Henderson, 1998) and also with comparisons between self-reported and objectively measured
activity in multi-user games (Zielke, Schildmann, & Wirausky, 1995).
Within social cognitive theory it
is the perception of behavior rather than the "actual" behavior that matters: "If [people] want to exert
influence over their own actions, they have to know what they are doing" (Bandura, 1986, p. 336).
Earlier we noted how an "actual" measure of e-mail use may have been a confounding factor in the
original Internet paradox study.
The use of a convenience sample from an introductory college course poses another limitation.
Other populations may yield different results and different causal mechanisms. The sample did
include a wider range of Internet experience than was reflected in the original Internet Paradox
study, but still not the full range of experience in the general Internet user population, excluding
those with less than two months’ experience.
Finally, our cross sectional design limits our ability to make statements about causal relationships.
Third variables arising from history and maturation cannot be ruled out. The exact relationship
between social support and depression also differs between cross-sectional and prospective time
series studies, possibly because of confounding between prior depressive symptoms and subscales
of social support measures, notably the self-esteem dimension of the ISEL (Schonfeld, 1990).
For Further Research
Thus, an important direction for future research is to verify the causal mechanisms proposed here
through longitudinal studies. In addition to verifying the possible causal relationship between general
Internet use and measures of psychological well-being, it would be instructive to examine the impact
of specific types of Internet use (e.g. e-mail, chat rooms, online research, entertainment). While the
social displacement hypothesis--that strong face-to-face social ties are replaced by weak online
ties--does not seem a viable mechanism in light of the current analysis, it may yet prove to be valid
when examining the impact of online entertainment on social involvement, for example.
There is a need for controlled studies that do not draw exclusively upon naive populations, or else
to extend them beyond two years, since novice users may not achieve the necessary levels of
self-efficacy required to relieve the stress of their struggles to master the Internet in that time.
Cross-lagged correlation techniques could be applied among more widely representative populations
LaRose, Eastin, & Gregg/Reformulating the Internet Paradox: Social ...
http://www.behavior.net/JOB/v1n2/paradox.html
12 z 17
2008-02-07 15:04
The multidimensional nature of social support should be recognized in future research, as the
subscales have been found to have differing relationships to depression (Hawkins, 1999; Schonfeld,
1991). Depression itself is multidimensionsal and the CES-D in particular has been found to have
four factors (depressed affect, somatic disturbance, positive affect, and interpersonal difficulties;
Lewis, 1995) which may be differentially affected by social support. Two different types of stressful
events are also recognized, one arising from daily hassles as examined here and in Kraut et al.
(1998), but another stemming from major life crises (such as the death of a spouse). Thus,
interactions among differing dimensions of social support, depression and stress could be
productively examined in relation to Internet communication. For example, social support for major
life crises might be more forthcoming from online discussion groups organized around major life
crises (e.g., cancer support groups) than from e-mail with known associates (e.g. Walther & Boyd, in
press).
Further development of a measure of Internet stress is called for since the present one achieved
a barely acceptable minimum level of internal consistency. Stressful events over which there is
considerable volitional control (e.g., the receipt of unwanted e-mail) can be distinguished from those
where control is limited (e.g., Internet brownouts). According to the goodness-of-fit hypothesis
(Roberts, 1995), social support may be more important when the stressors cannot be altered.
Sources of stress that are attributable to technology and those that are attributable to the behavior of
other people on the Internet, such as the receipt of unwanted e-mail, could also be distinguished.
Further research should also explore other constructs suggested by social cognitive theory. The
possibility of social self-efficacy was discussed previously. A distinction might be made between
general Internet self-efficacy and coping self-efficacy, that is, beliefs in one's ability to successfully
perform actions that alleviate specific sources of stress (Holahan & Holahan, 1987b).
Policy Implications
Kraut et al. (1998) posed some far-reaching suggestions for public policy that we would like to
critique in light of the current findings. We agree that attention should to be devoted to fostering the
use of the Internet as a medium of social exchange as well as a medium for commerce and
information retrieval. However, their recommendation to improve search capabilities for finding
people (p. 1030) could be counterproductive, at least for novice users, since it is likely to lead to
stressful unwanted contacts. Thus, more powerful tools for filtering out unwanted e-mail are also
needed.
We also do not find the hypothesis that the Internet inherently diminishes strong social ties to be
entirely compelling. Kraut et al. seek policies that would encourage communication in pre-existing
social groups (p. 1030). Such policies could make that hypothesis self-fulfilling at the expense of
Internet users who seek rewarding social interaction (e.g. in illness-related support groups)
unavailable in their own social circle. Walther and Boyd (in press) found that Internet social support
offers benefits that face-to-face social networks cannot by providing anonymity, constant access to
better quality expertise, and enhanced modes of expression, with less chance of embarrassment
and without incurring an obligation to the support provider. This perspective highlights the need for
policies that promote contacts outside of existing social networks.
But perhaps there should be much more concern about computer support as well as social
support. The Internet has always been a rather hostile place for the "newbie." Support for new users
may prove to be a critical factor in efforts to close the Digital Divide (Hoffman & Novak, 1998; NTIA,
1999). The novice users in the present sample had a powerful motivation to master the Internet, in
that it was instrumental to their success in college, while the more experienced users may have
been intrinsically motivated to adopt the Internet as an expression of a personal interest in
computing while still in high school. The late adopters who must be introduced to the Internet to
close the Digital Divide may more closely resemble the HomeNet sample. They may lack sufficiently
compelling expectations of the outcomes of Internet usage to adopt it on their own and may fail to
develop the sense of self-efficacy required to master their anxieties and persist in Internet use once
introduced to it.
LaRose, Eastin, & Gregg/Reformulating the Internet Paradox: Social ...
http://www.behavior.net/JOB/v1n2/paradox.html
13 z 17
2008-02-07 15:04
Current social policies aimed at closing the divide, such as the e-Rate program (USAC, 2000),
focus on providing the technological means of Internet access, but not the technical and social
support that may prove vital to the success of these efforts. The new E-Corps initiative (Corporation
for National Service, 2000) aimed at staffing schools and libraries with tutors and technical support is
a promising step in this direction. Presumably, these efforts will create what is referred to in social
cognitive theory as an enactive mastery experience, through which novice users are guided to
achieve gradual improvements in performance. Vicarious experience (seeing similar others
succeed), verbal persuasion and control of physiological states are also effective ways of increasing
self-efficacy (Bandura, 1997).
It might also be argued that the problem will solve itself as new users progress to become
experienced ones. However, to take this approach would be to condemn new Internet users to years
of unproductive effort. It also risks widening the Digital Divide if frustrated users, unable to use the
Internet effectively to obtain desirable outcomes, abandon its use or fail to strive for new levels of
attainment.
References
Adelman, M. B., Parks, M. R. & Albrecht, T. L. (1987). Beyond close relationships: Support in
weak ties. In T. L. Albrecht & M. B. Adelman (Eds.), Communicating social support (pp 126-147).
Newbury Park, CA: Sage.
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological
Review, 84, 191-215.
Bandura, A. (1982). Self-efficacy mechanisms in human agency. American Psychologist, 37,
122-147.
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory.
Englewood Cliffs, N.J.: Prentice-Hall.
Bandura, A. (1989). Human agency in social cognitive theory. American Psychologist, 44,
1175-1184.
Bandura, A. (1997). Self-efficacy: The exercise of control. New York : W.H. Freeman.
Barrera, M., Sandler, I. N., & Ramsay, T. B. (1981). Preliminary development of a scale of social
support: Studies on college students. American Journal of Community Psychology, 9, 435-447.
Charney, T., & Greenberg, B. S. (in press). Uses and gratifications of the Internet. In C. Lin. & D.
Atkin, (Eds). Communication, technology and society: New media adoption and uses. Cresskill, NJ:
Hampton Press.
Cobb, S. (1976). Social support as a moderator of life stress. Psychosomatic Science, 38,
300-314.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, N.J.: L.
Earlbaum Associates.
Cohen, S., Mermelstein, R., Kamarck, T., & Hoberman, H. (1985). Measuring the functional
components of social support. In I. G. Sarason & B. R. Sarason (Eds.), Social support: Theory,
research and applications (pp. 73-94). The Hague, Holland: Martines Niijhoff.
Cohen, S., Sherrod, D. R., & Clark, M. S. (1986). Social skills and the stress-protective role of
social support. Journal of Personality and Social Psychology, 50, 963-973.
Cohen, S., & Wills, T. A. (1985). Stress, social support and the buffering hypothesis.
Psychological Bulletin, 98, 310-357.
LaRose, Eastin, & Gregg/Reformulating the Internet Paradox: Social ...
http://www.behavior.net/JOB/v1n2/paradox.html
14 z 17
2008-02-07 15:04
Cook, T., & Cambell, D. (1979). Quasi-experimentation: Design & analysis issues for field
settings. Chicago: Rand McNally.
Cutrona, C. E., & Troutman, B. R. (1986). Social support, infant temperament and parenting
self-efficacy: A mediational model of postpartum depression. Child Development, 57, 1507-1518.
Corporation for National Service (2000). Creating digital opportunities for national service.
National Service News, 103. Retrieved November 29, 2000 from the World Wide Web:
http://www.nationalservice.org/news/nsn/103.html
Cutrona, C. E., & Russell , D. W. (1987). The provisions of social support and adaptations to
stress. Advances in personal relationships (Vol. 1, pp. 37-67). London: J. Kingsley Publishers.
Deane, F. P., Podd, J., & Henderson, R. D. (1998). Relationship between self-report and log
data estimates of information system usage. Computers in Human Behavior, 14, 621-636.
Döring, N. (1996). Führen computernetze in die Veriensamung? Grupppendynamick, 27,
289-307.
Eastin, M. A., & LaRose, R. L. (2000). Internet self-efficacy and the psychology of the digital
divide. Journal of Computer Mediated Communication, 6 (1). Retrieved November 29, 2000 from the
World Wide Web:
http://www.ascusc.org/jcmc/vol6/issue1/eastin.html
Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78,
1360-1380.
GVU (Graphic, Visualization and Usability Center) (1999). GVU's tenth annual WWW user's
survey. Georgia Institute of Technology. Retrieved November 23, 1999 from the World Wide Web:
http://www.cc.gatech.edu/gvu/user_surveys/survey-1998-10/graphs/use/
(Questions 11, 30, 101,
102).
Hamman, R. B. (1999). Computer networks linking communities: A study of the effects of
computer network use upon pre-existing communities. In U. Thiedke (Ed.), Virtualle Gruppen-
Characteristika und Prolemdimensionen (Virtual groups: Characteristics and problematic
dimensions). Wiesbaden, Germany: Westdeutscher Verlag. Retrieved November 23, 1999, from the
World Wide Web:
http://www.socio.demon.co.uk/mphil/short.html
Hashimoto, K., Kurita, H., Haratani, T., & Ishibachi, T. (1999). Direct and buffering effects of
social support on depressive symptoms of the elderly with home help. Psychiatry and Clinical
Neurosciences, 53, 95-100.
Hawkins, W. E., Tan, P. P., Hawkins, M. J., Smith, E. & Ryan, E. (1999). Depressive
symptamatology and specificity of social support. Psychological Reports, 84, 1180-1186.
Heim, M (1993) The metaphysics of virtual reality. Oxford: Oxford University Press.
Hoffman, D. L., &. Novak, T. P. (1998, April 17). Bridging the racial divide on the Internet.
Science, 280, 90-391.
Holahan, C. K., & Holahan, C. J. (1987a). Self-efficacy, social support and depression in aging: A
longitudinal analysis. Journal of Gerontology, 42, 65-68.
Holahan, C. K., & Holahan, C. J. (1987b). Life stress, hassles and self-efficacy in aging: A
replication and extension. Journal of Applied Social Psychology, 17, 574-592.
Joseph, S., & Lewis, C.A. (1995). Factor-analysis of the center for epidemiologic
studies-depression scale. Psychological Reports, 76, 40-42.
Kanner, A. D., Coyne, J. C., Schaefer, C. & Lazarus, R. S. (1981). Comparisons of two modes of
stress measurement: Daily hassles and uplifts versus major life events. Journal of Behavioral
LaRose, Eastin, & Gregg/Reformulating the Internet Paradox: Social ...
http://www.behavior.net/JOB/v1n2/paradox.html
15 z 17
2008-02-07 15:04
Medicine, 4, 1–39.
Katz, J. E., & Aspden, P. (1997). A nation of strangers? Communications of the ACM, 40, 81-86.
Kessler, R. C. (1997). The effects of stressful life events on depression. Annual Review of
Psychology, 48, 191-214.
Kiesler, S. & Kraut, R. (1999). Internet use and the ties that bind. The American Psychologist, 54,
783-784.
Kraut, R., Patterson, M., Lundmark, V., Kiesler, S., Mukophadhyay, T., & Scherlis, W. (1998).
Internet paradox: A social technology that reduces social involvement and psychological well-being?
American Psychologist, 53, 1017-1031
Kraut, R., Mukhopadhyay, T., Szczypula, J., Kiesler, S., & Sherlis, B. (1999) Information and
communication: Alternative uses of the Internet in households. Information Systems Research, 10,
287-303.
Kroker, A., & Weinstein M. A. (1994). Data trash: The theory of the virtual class. New York: St.
Martin's Press.
LaRose, R. (1999). Understanding personal telephone behavior. In H. Sawhney & G. A. Barnett
(Eds.), Progress in communication sciences: Vol. XV (pp. 1-18). Stamford, CT: Ablex.
McClendon, M. (1994). Multiple regression and causal analysis. Itasca, IL: F. E. Peacock
Publishers, Inc.
McNally, S.T. & Newman, S. (1999). Objective and subjective conceptualizations of social
support. Journal of Psychosomatic Research, 46, 309-314.
Nie, N. H., & Erbring, L. (2000). Internet and society. Retrieved May 10, 2000 from the World
Wide Web:
http://www.stanford.edu/group/siqss/Press_Release/Preliminary_Report.pdf
Norbeck, J. S., Lindsey, A. M. & Carrieri, V. L. (1981). The development of an instrument to
measure social support. Nursing Research, 30, 264-269.
NTIA (National Telecommunications and Information Administration) (1999). Falling through the
net: Defining the digital divide. Retrieved November 23, 1999 from the World Wide Web:
http://www.ntia.doc.gov/ntiahome/fttn99/contents.html
Oritt, E. J., Paul, S. C., & Behrman, J. A. (1985). The perceived support network inventory.
American Journal of Community Psychology, 13, 565-582.
Parks, M. R. & Floyd, K. (1996). Making friends in cyberspace. Journal of Communication, 46,
80-97.
Parks, M. R., & Roberts, L. D. (1998). ‘Making MOOsic’: The development of personal
relationships on line and a comparison to their off-line counterparts. Journal of Social and Personal
Relationships, 15, 519-537.
Pew Research Center (2000). Tracking online life: How women use the Internet to cultivate
relationships with family and friends. Retrieved May 10, 2000, from the World Wide Web:
http://www.pewinternet.org/reports/toc.asp?Report=11
Radloff, L. (1977). The CES–D scale: A self-report depression scale for research in the general
population. Applied Psychological Measurement, 1, 385–401.
Rich, A. R., & Scovel, M. (1987). Causes of depression in college students: A cross-lagged panel
correlational analysis. Psychological Reports. 60, 27-30.
Rierdan, J. (1999). Internet-depression link? The American Psychologist, 54, 781-782.
LaRose, Eastin, & Gregg/Reformulating the Internet Paradox: Social ...
http://www.behavior.net/JOB/v1n2/paradox.html
16 z 17
2008-02-07 15:04
Riphagen, J. & Kanfer, A. (1997). How does e-mail affect our lives? National Center for
Supercomputing Applications Retrieved October 15, 1999 from the World Wide Web:
http://www.ncsa.uiuc.edu/edu/trg/e-mail/index.html.
Roberts, S. M. (1995). Applicability of the goodness-of-fit hypothesis to coping with daily hassles.
Psychological Reports, 77, 943-954.
Rook, K. (1984). The negative side of social interaction: impact on psychological well-being.
Journal of Personality and Social Psychology, 46, 1097-1108.
Sarason, I. G., Levine, H. M., Basham, R. B., & Sarason, B. R. (1983). Assessing social support:
The social support questionnaire. Journal of Personality and Social Psychology, 44, 127-139.
Scherer, K. (1997). College life on-line: Healthy and unhealthy Internet use. Journal of College
Student Development, 38, 655-665.
Shapiro, J. S. (1999). Loneliness: Paradox or artifact? The American Psychologist, 54, 782-783.
Shonfeld, I. S. (1991). Dimensions of functional social support and psychological symptoms.
Psychological Medicine, 21, 1051-1060.
Silverman, T. (1999). The Internet and relational theory. The American Psychologist, 54, 780-781.
Stoll, C. (1995). Silicon snake oil: Second thoughts on the information superhighway. NY:
Doubleday.
Turkle, S. (1995). Life on the screen: Identity in the age of the Internet. New York: Touchstone
Books.
USAC (Universal Service Administrative Company) (2000). Schools and Libraries Program.
Retrieved November 29, 2000 from the World Wide Web:
http://www.sl.universalservice.org/
Walther, J. B. (1996). Computer-mediated communication: Impersonal, interpersonal and
hyperpersonal interaction. Communication Research, 23, 3-43.
Walther, J. B., & Reid, L. D. (2000, February 4). Understanding the allure of the Internet.
Chronicle of Higher Education, B4-B5.
Walther, J. B., & Boyd, S. (in press). Attraction to computer-mediated social support. In C.A. Lin &
D. Atkin (Eds.), Communication technology and society: Audience adoption and uses of the new
media. New York: Hampton.
Wellman, B. (1996). Are personal communities local? A Dumptarian reconsideration. Social
Networks 18, 347-354.
Wellman, B., & Gulia, M. (1999). Virtual communities as communities: Net surfers don't ride
alone. In. M. A. Smith & P. Kollock (Eds.), Communities in cyberspace (pp. 167-194). NY:
Routledge.
Wynn, E., & Katz, J. E. (1997). Hyperbole over cyberspace: Self-presentation and social
boundaries in Internet home pages and discourse. The Information Society, 13, 297-327.
Zielke, A., Schildmann, S., & Wirausky, H. (1995). Spiel- und Sozialverhalten im Morgengrauen
[Play and social behavior in the MUD Morgengrauen]. Retrieved April 5, 2000 from the World Wide
Web:
http://www.mud.de/Forschung/verhalten.html
.
Return to
Journal of Online Behavior
Copyright © 2001 Behavior OnLine, Inc. All rights reserved.
LaRose, Eastin, & Gregg/Reformulating the Internet Paradox: Social ...
http://www.behavior.net/JOB/v1n2/paradox.html
17 z 17
2008-02-07 15:04
|
Behavior OnLine Home Page
|