7a Zbiór zadań z elektrotechniki Aleksy Markiewicz rozwiązania od 7 1 do 7 50

background image

7.1

Dane:

Szukane:

Wzory:

20

0, 2

l

cm

m

=

=

10

0,1

D

cm

m

=

=

'

314

/ (

3000

/ min)

rad s n

obr

ω

=

=

0, 4

3

7

0;

;

;

;

;

;

6 4 3 2 4

4

B

T

π π π π

α

π π

=

=

(

)

1

liczba par biegunów p

=

1...7

T

f

e

ω

=

=
=

=


2

1

sin

m

m

f

T

f

E

Blv

e

E

ω

π

α

=

=

=

=

'

1 314

50

2

2

1

1

0, 02

50

'

3 314

314

/

2

2

2

2

2

2

2

2

2

2

0,1

2 0, 4 0, 2 314

2, 51

2

m

m

p

f

Hz

T

s

f

p

rad s

r

D

D

E

Blv

B l

B l

fr

B l

f

B l

T

E

V

ω

π

π

ω

ω

π

π

π

ω

=

=

=

=

=

=

=

= ⋅

=

= ⋅

= ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅

⋅ = ⋅ ⋅ ⋅ ⋅

= ⋅

1

2

3

4

5

6

sin

2, 51 sin 0

0

sin

2, 51 sin 30

2, 51 0, 5 1, 26

6

sin

2, 51 sin 45

2, 51 0, 707

1, 77

4

sin

2, 51 sin 60

2, 51 0,866

2,17

3

sin

2, 51 sin 90

2, 51 1

2, 51

2

3

sin

2, 51 sin135

2,

4

o

m

o

m

o

m

o

m

o

m

o

m

e

E

V

e

E

V

e

E

V

e

E

V

e

E

V

e

E

α

π

π

π

π

π

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

⋅ =

=

=

=

7

51 sin(180

45 )

2, 51 sin 45

2, 51 0, 707

1, 77

7

sin

2, 51 sin 315

2, 51 sin(360

45 )

2, 51 ( sin 45 )

2, 51 0, 707

1, 77

4

o

o

o

o

o

o

o

m

V

e

E

V

π

=

=

=

=

=

=

=

⋅ −

= −

= −

______________________________________________________________________
7.2

Dane:

Szukane:

Wzory:

500

f

Hz

=

T

=


1

T

f

=

1

1

0, 002

500

T

s

f

=

=

=

background image

______________________________________________________________________

7.3

Dane:

Szukane:

Wzory:

0, 004

T

s

=

f

=

1

T

f

=

2 f

ω

π

=

1

1

250

0, 004

f

Hz

T

= =

=

2

6, 28 250 1570

/

f

rad s

ω

π

=

=

=

______________________________________________________________________

7.4

Dane:

Szukane:

Wzory:

50

f

Hz

=

T

ω

λ

=

=

=

1

T

f

=

2 f

c

f

ω

π

λ

=

=

1

1

250

0, 004

f

Hz

T

= =

=

2

6, 28 250 1570

/

f

rad s

ω

π

=

=

=

8

6

3 10

6 10

6000

50

c

m

km

f

λ

=

=

= ⋅

=

______________________________________________________________________

7.5

Dane:

Szukane:

Wzory:

3

1

3

2

6

3

227

227 10

818

227 10

67, 94

67, 94 10

f

kHz

Hz

f

kHz

Hz

f

MHz

Hz

=

=

=

=

=

=

T

λ

=
=

1

T

f

=

c

f

λ

=

background image

6

1

3

1

8

1

3

1

6

2

3

2

8

2

3

2

9

3

6

3

8

3

6

3

1

1

4, 4 10

4, 4

227 10

3 10

1322

227 10

1

1

1, 222 10

1, 222

818 10

3 10

367

818 10

1

1

14, 72 10

14, 72

67, 94 10

3 10

4, 42

67, 94 10

T

s

s

f

c

m

f

T

s

s

f

c

m

f

T

s

ns

f

c

m

f

µ

λ

µ

λ

λ

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

______________________________________________________________________

7.6

Dane:

Szukane:

Wzory:

1 m

λ

=

f

=

c

f

λ

=

8

8

3 10

3 10

300

1

c

f

Hz

MHz

λ

= =

= ⋅

=

______________________________________________________________________

7.7

Dane:

Szukane:

Wzory:

50

f

Hz

=

ω

=

2 f

ω

π

=

2

6, 28 50

314

/

f

rad s

ω

π

=

=

=


______________________________________________________________________

7.8

Dane:

Szukane:

Wzory:

50

'

20, 9

/ (

200

/ min)

f

Hz

rad s n

obr

ω

=

=

=

p

=

'

2

p

f

ω

π

=

background image

2

6, 28 50

15

'

20, 9

f

p

π

ω

=

=

=

______________________________________________________________________

7.9

Dane:

Szukane:

Wzory:

2

'

52, 3

/ (

500

/ min)

p

rad s n

obr

ω

=

=

=

f

=

'

2

p

f

ω

π

=

'

2 52, 3

16, 66

2

6, 28

p

f

Hz

ω

π

=

=

=

______________________________________________________________________

7.10

Dane:

Szukane:

Wzory:

1

2

3

4

2

3

4

5

50

p

p

p

p

f

Hz

=

=

=

=

=

1...4

'

ω

=

'

2

p

f

ω

π

=

1

1

2

2

3

3

4

3

2

6, 28 50

'

157

/

2

2

6, 28 50

'

104, 7

/

3

2

6, 28 50

'

78, 5

/

4

2

6, 28 50

'

62,8

/

5

f

rad s

p

f

rad s

p

f

rad s

p

f

rad s

p

π

ω

π

ω

π

ω

π

ω

=

=

=

=

=

=

=

=

=

=

=

=


______________________________________________________________________


7.11

Dane:

Szukane:

Wzory:

t

t

e

i

=

=

2

f

ω

π

=

background image

310 sin

2 sin(

)

4

0, 005

50

u

t

i

t

t

s

f

Hz

ω

π

ω

=

=

=

=

(

)

2

360

360

50 0, 005 360

90

2

2

310 sin

310 sin

310 sin 90

310

8 50 0, 005 1

4

4 2

4 360

360

360

360

0,125 360

45

2

4 2

4 2

8

2 sin

2 sin

2 sin 45

1, 41

4

lub

o

o

o

o

o

t

o

o

o

o

o

o

o

t

t

ft

u

t

V

t

t

ft

i

t

A

i

ω

π

α

π

π

ω

α

π

ω

π

ω π

π

π

α

π

π

π

π

π

ω

α

=

=

=

=

=

=

=

=

⋅ ⋅

=

=

=

=

=

=

=

=

=

=

2 sin

2 cos

2 cos 45

1, 41

4

4

o

t

t

A

π

π

ω

=

=

=

=


______________________________________________________________________


7.12

Dane:

Szukane:

Wzory:

6

500

f

Hz

π

ϕ

=

=

t

=

2

f

ω

π

=

4

2

2

1

6

1, 667 10

166, 7

2

2

12 500

t

T

tf

t

s

s

f

f

ϕ

π

ϕ

π

π

ϕ

µ

π

π

=

=

=

=

=

=

=

______________________________________________________________________


7.13

Dane:

Szukane:

Wzory:

background image

5

300

3 10

50

l

km

m

f

Hz

=

= ⋅

=

t

T

ϕ

=

=

2

f

ω

π

=

c

f

λ

=

8

6

3 10

6 10

50

c

m

f

λ

=

=

= ⋅

W ten sposób

lub troszkę inaczej

5

6

360

3 10

360

360

18

6 10

18

1

360

360

20

o

o

o

o

o

o

o

l

l

t

T

ϕ

λ

ϕ

λ

ϕ

=

=

=

=

=

=

=

5

6

2

3 10

2

2

6 10

10

2

360

360

360

10

18

2

2

1

1

2

10

1

2

10 2

20

o

o

o

o

l

l

t

f

T

f

ϕ

π λ

π

ϕ

π

π

λ

ϕ

α

π

π

ϕ

α

π

π

ϕ

π

π

π

=

=

=

=

=

=

=

=

=

=

=

=


______________________________________________________________________

7.14

Dane:

Szukane:

Wzory:

1

2

3

10 sin(

) [ ]

4

10 sin(

) [ ]

2

5sin

[ ]

i

t

A

i

t

A

i

t A

π

ω

π

ω

ω

=

+

=

+

=

i

=

sin(

)

i

I

t

ω ϕ

=

+

c

f

λ

=

1

2

3

4 360

45

2

2 360

90

2

0

360

0

2

o

o

o

o

o

o

π

ϕ

π

π

ϕ

π

ϕ

π

=

=

=

=

=

=

1

2

3

i

i

i

i

= + +

background image

1

1

1

1

1

1

1

2

3

1

2

2

2

2

2

2

cos

10 cos 45

10

10 0, 707

7, 07

2

2

sin

10 cos 45

10

10 0, 707

7, 07

2

7, 07 0 5 12, 07

7, 07 10 0 17, 07

12, 07

17, 07

20, 91

17, 07

tg

1, 4142

12, 07

5

o

x

o

y

x

x

x

x

y

y

y

xy

x

y

y

x

i

I

A

i

I

A

i

i

i

i

A

i

i

i

i

A

i

i

i

A

i

i

ϕ

ϕ

α

α

=

=

=

= ⋅

=

=

=

=

= ⋅

=

= + +

=

+ + =

= +

+ =

+ + =

=

+

=

+

=

= =

=

=

4 44 '

20, 91sin(

54 44 ')

o

o

i

t

ω

=

+


______________________________________________________________________

7.15

Dane:

Szukane:

Wzory:

1

2

0

0

0

0

0

200

50

0

2

0 ; 60 ; 90 ; 120 ; 180

m

m

U

U

V

f

Hz

od

do

π

α

=

=

=

=

m

U

=

sin(

)

m

u

U

t

ω ϕ

=

+

Odświeżyć wzory
trygonometryczne i związki
pomiędzy kątami

1sposób

y

x

i

1

i

2

i

3

i

background image

Teraz dodawanie wektorów jak na geometrii.

( )

(

)

( )

2

2

2

2

2

2

2

2

1

2

2

1

1 2

2

2

2

2

2

2

2

2

1

1 2

2

1

1 2

2

2

2

1

1 2

2

2

2

1

1

1

2

1

2

2

2

1

1

2

2

(

cos )

(

sin )

2

cos

cos

sin

2

cos

(cos

sin

)

2

cos

1

2

cos

2

cos

40000 80000 1 40000

400

2

cos

m

m

m

m

m

m

m

m

m

u

u

u

u

u

u u

u

u

u

u u

u

u

u u

u

u

u

u u

u

u

U

U U

U

V

u

U

U U

α

α

α

α

α

α

α

α

α

α

α

α

=

+

+

=

+

+

+

=

=

+

+

+

=

+

+

=

+

+

=

+

+

=

+

⋅ +

=

=

+

(

)

( )

(

)

( )

(

)

( )

(

)

( )

(

)

2

2

2

2

3

1

1

2

3

2

2

2

2

2

0

0

4

1

1

2

4

2

1

1

2

2

2

2

0

1

1

2

2

5

1

40000 80000

40000

346, 4

2

2

cos

40000 80000 0 40000

282,8

2

cos

2

cos(90

30 )

1

2

( sin 30 )

40000 80000

40000

200

2

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

U

V

u

U

U U

U

V

u

U

U U

U

U

U U

U

U

U U

U

V

u

α

α

+

=

+

⋅ +

=

=

+

+

=

+

⋅ +

=

=

+

+

=

+

+

+

=

=

+

+

=

⋅ +

=

=

( )

(

)

( )

( )

2

2

2

2

0

1

1

2

5

2

1

1

2

2

2

cos

2

cos(180 )

40000 80000 ( 1) 40000

0

m

m

m

m

m

m

m

m

U

U U

U

U

U U

U

V

α

+

+

=

+

+

=

=

+

⋅ − +

=


2sposób
Dodawanie wektorów z wykorzystaniem Twierdzenia Cosinusów

2

2

2

2

cos

a

b

c

bc

α

= + −

0

180

β

α

=

2

2

2

1

1 2

2

cos

u

u

u

u u

β

=

+ −

2

2

2

2

0

1

1

2

1

2

1

2

1

2

2

2

1

2

1

2

2

cos

2

cos(180

)

2

( cos )

40000 40000 80000 1

400

m

m

m

m

m

m

m

m

m

m

m

m

m

u

U

U

U U

U

U

U U

U

U

U U

V

β

α

α

=

+

=

+

=

=

+

=

+

+

⋅ =

y

x

u

2

u

1

u

α

α

β

y

x

u

2

u

1

u

α

α

background image

2

2

2

2

0

2

1

2

1

2

2

1

2

1

2

2

2

2

1

2

1

2

2

2

2

2

2

0

3

1

2

1

2

3

1

2

1

2

3

2

2

1

2

1

2

3

2

cos

2

cos(180

)

1

2

( cos

)

40000 40000 80000

346, 4

2

2

cos

2

cos(180

)

2

( cos

)

40000

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

u

U

U

U U

U

U

U U

U

U

U U

V

u

U

U

U U

U

U

U U

U

U

U U

β

α

α

β

α

α

=

+

=

+

=

=

+

=

+

+

⋅ =

=

+

=

+

=

=

+

=

2

2

2

2

0

4

1

2

1

2

4

1

2

1

2

4

2

2

0

0

1

2

1

2

2

2

2

2

0

5

1

2

1

2

5

1

2

1

2

5

2

1

40000 80000 0

282,8

2

cos

2

cos(180

)

1

2

cos(180

120 )

40000 40000 80000

200

2

2

cos

2

cos(180

)

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

V

u

U

U

U U

U

U

U U

U

U

U U

V

u

U

U

U U

U

U

U U

U

U

β

α

β

α

+

+

⋅ =

=

+

=

+

=

=

+

=

+

⋅ =

=

+

=

+

=

=

+

2

0

0

2

1

2

2

cos(180

180 )

40000 40000 80000 0

0

m

m

m

U U

V

=

+

⋅ =



______________________________________________________________________

7.16

Dane:

Szukane:

Wzory:

1

2

200

50

220

m

m

m

U

U

V

f

Hz

u

V

=

=

=

=

α

=

sin(

)

m

u

U

t

ω ϕ

=

+

Odświeżyć wzory
trygonometryczne i związki
pomiędzy kątami

1sposób

Teraz dodawanie wektorów jak na geometrii.

2

2

2

2

2

2

2

2

1

2

2

1

1 2

2

2

2

2

2

2

2

2

1

1 2

2

1

1 2

2

2

2

2

1

1 2

2

2

2

2

2

2

2

1

2

1 2

(

cos )

(

sin )

2

cos

cos

sin

2

cos

(cos

sin

)

2

cos

1

2

cos

220

200

200

48400 40000 4000

cos

0

2

2 200 200

80000

m

m

u

u

u

u

u

u u

u

u

u

u u

u

u

u u

u

u

u

u u

u

u

u

u

u u

α

α

α

α

α

α

α

α

α

α

α

=

+

+

=

+

+

+

=

=

+

+

+

=

+

+

=

+

+

=

=

=

= −

, 395

Cosinus przyjmuje wartość ujemną w II i III ćwiartce

0

0

0

0

cos

cos(180

)

66 14 '

180

113 46 '

α

ϕ

α

ϕ

α

=

=

=

− =

lub

y

x

u

2

u

1

u

α

α

background image

0

0

0

0

cos

cos(180

)

66 14 '

180

226 14 '

α

ϕ

α

ϕ

α

=

+

=

=

+ =


2sposób
Dodawanie wektorów z wykorzystaniem Twierdzenia Cosinusów

2

2

2

2

cos

a

b

c

bc

α

= + −

0

180

β

α

=

2

2

2

1

1 2

2

cos

u

u

u

u u

β

=

+ −

2

2

2

1

2

1

2

2

2

2

2

2

2

1

2

1

2

2

cos

220

200

200

48400 40000 40000

cos

0,395

2

2 200 200

80000

m

m

m

m

m

m

m

m

m

m

u

U

U

U U

u

U

U

U U

β

β

=

+

=

=

=

=

− ⋅

Cosinus przyjmuje wartość dodatnia w I i IV ćwiartce

0

0

0

66 14 '

180

113 46 '

α

β

α

=

=

− =

lub

0

0

0

0

0

cos

cos(

)

66 14 '

180

180

66 14 '

246 14 '

α

ϕ

α

ϕ

α

=

= −

=

− =

+

=


______________________________________________________________________

7.17

Dane:

Szukane:

Wzory:

1

2

200

50

220

m

m

sk

U

U

V

f

Hz

U

V

=

=

=

=

α

=

sin(

)

m

u

U

t

ω ϕ

=

+

2

m

sk

U

U

=

Odświeżyć wzory
trygonometryczne i związki
pomiędzy kątami

1sposób

y

x

u

2

u

1

u

α

α

y

x

u

2

u

1

u

α

α

β

background image

Teraz dodawanie wektorów jak na geometrii.

(

)

2

2

2

2

2

2

2

2

1

2

2

1

1 2

2

2

2

2

2

2

2

2

1

1 2

2

1

1 2

2

2

2

2

1

1 2

2

2

2

2

2

2

2

1

2

1 2

(

cos )

(

sin )

2

cos

cos

sin

2

cos

(cos

sin

)

2

cos

1

2

2

cos

220

2

200

200

96800 40000 400

cos

2

2 200 200

m

sk

m

m

u

u

u

u

u

u u

u

u

u

u u

u

u

u u

u

u

U

u

u

u u

u

u

u

u

u u

α

α

α

α

α

α

α

α

α

α

α

=

+

+

=

+

+

+

=

=

+

+

+

=

+

+

=

=

+

+

=

=

=

0

0, 21

80000

=

Cosinus przyjmuje wartość dodatnią w I i IV ćwiartce

0

78 54 '

α

=

lub

0

0

cos

cos(

)

78 58 '

78 58 '

α

ϕ

α

ϕ

=

=

= −


2sposób
Dodawanie wektorów z wykorzystaniem Twierdzenia Cosinusów

2

2

2

2

cos

a

b

c

bc

α

= + −

0

180

β

α

=

2

2

2

1

1 2

2

cos

u

u

u

u u

β

=

+ −

(

)

2

2

2

1

2

1

2

2

2

2

2

2

2

1

2

1

2

2

2

cos

220 2

200

200

96800 40000 40000

cos

0, 21

2

2 200 200

80000

m

sk

m

m

m

m

m

m

m

m

m

m

u

U

u

U

U

U U

u

U

U

U U

β

β

=

=

+

=

=

=

= −

− ⋅

Cosinus przyjmuje wartość ujemną w II i III ćwiartce

0

0

0

0

0

cos

cos(180

)

180

78 54 '

180

78 54 '

ϕ

β

β

α

β

=

=

=

− =

lub

0

0

cos

cos(

)

78 54 '

78 54 '

ϕ

β

β

α

β

=

=

= − = −



______________________________________________________________________

7.18

y

x

u

2

u

1

u

α

α

β

background image

Dane:

Szukane:

Wzory:

5, 55

sk

I

A

=

( )

m

sr

I

I

π

=

=

( )

2

sr

m

I

I

π

π

=

2

m

sk

I

I

=

( )

2

5, 55 2

7,82

2

2

2 2

2

5, 55

4, 98

m

sk

sr

m

sk

I

I

A

I

I

I

A

π

π

π

π

=

=

=

=

=

=

=


______________________________________________________________________

7.19

Dane:

Szukane:

Wzory:

230

sk

U

V

=

m

U

=

2

m

sk

U

U

=

2

230 2

324,3

m

sk

U

U

V

=

=


______________________________________________________________________

7.20

Dane:

Szukane:

Wzory:

2

sin(

)

6

m

i

I

t

π

ω

=

+

1, 3

0

i

A

t

=

=

sk

I

=

2

m

sk

I

I

=

0

0

2

2

sin(

)

sin(

)

sin(60 )

6

6

1, 3

1, 5

sin(60 )

3

2

1, 06

2

m

m

m

m

m

sk

i

I

t

I

I

i

I

A

I

I

A

π

π

ω

=

+

=

=

=

=

=

=

______________________________________________________________________

background image


7.21

Dane:

Szukane:

Wzory:

1

2

1,8

m

m

U

U

V

=

=

0

90

2

π

α

=

=

sk

U

=

2

m

sk

U

U

=

1

2

1

2

sin(

)

sin(

)

2

m

m

u

u

u

U

t

U

t

π

ω

ω

= + =

+

+

1sposób

Teraz dodawanie wektorów jak na geometrii.
Przy tym kącie najlepiej od razu z Pitagorasa

2

2

2

1

2

2

2

2

2

1

2

1,8

1,8

1,8

2

2, 55

1,8

2

m

m

m

m

m

m

m

U

U

U

U

U

U

V

U

U

V

=

+

=

+

=

+

=

=

=

=


______________________________________________________________________

7.22

Dane:

Szukane:

Wzory:

5sin

i

t

ω

=

( )

sr

I

π

=

2

sr

m

I

I

π

=


sin

5

m

m

i

I

t

I

A

ω

=

=

2

2

5

3,18

sr

m

I

I

A

π

π

=

=


______________________________________________________________________

7.23

y

x

u

2

u

1

u

α

α

background image

Dane:

Szukane:

Wzory:

5 2

8

m

I

A

t

h

=

=

1

Q

=

2

Q

=

Q

I

t

=

2

sr

m

I

I

π

=


Do obliczeń bierzemy prąd średni. (patrz definicja wartości średniej)

Przy prostowanie dwupołówkowym, wartość średnia prądu dla każdego półokresu jest taka
sama.

2

2

2

5 2 8 3600 129711

sr

m

Q

I t

I t

C

π

π

=

=

=

⋅ ⋅

=

lub

2

2

2

5 2 8

36

sr

m

Q

I t

I t

Ah

π

π

=

=

=

⋅ =


Przy prostowanie jednopołówkowym, w każdym okresie jeden półokres prądu jest blokowany
czyli wartość średnia w okresie jest o połowę mniejsza.

1

2

1

5 2 8 3600

64855

2

2

sr

m

I

Q

t

I t

C

π

π

=

=

=

⋅ ⋅

=

lub

1

2

1

5 2 8 18

2

2

sr

m

I

Q

t

I t

Ah

π

π

=

=

=

⋅ =

______________________________________________________________________

7.24

Dane:

Szukane:

Wzory:

2

0, 222

I

A

=

1

1

a

b

I

I

=

=

2

sr

m

I

I

π

=

2

m

sk

I

I

=


Miernik elektromagnetyczne wyskalowane są w wartości skutecznej.
Miernik magnetoelektryczne reagują na wartość średnią.

2

2

2

0, 222 2

0, 314

a

b

m

sk

I

I

I

I

A

=

=

=

=

=


Prostowanie dwópołówkowe

1

2

2

2

2 0, 222 2

0, 2

3,14

m

sk

a

sr

I

I

I

I

A

π

π

=

=

=

=

=

Prostowanie jednopołówkowe

background image

1

2

2

2

0, 222 2

0,1

2

2

2

3,14

sr

m

sk

b

I

I

I

I

A

π

π

=

=

=

=

=


______________________________________________________________________

7.25

Dane:

Szukane:

Wzory:

180

m

U

V

=

sr

U

=




1

1

2

2

3

3

1

2

3

0

2

2

2

2

2

2

2

0

2

2

2

2

4

4

2

2

180 120

3

3

6

6

m

m

m

m

sr

sr

m

m

m

m

sr

sr

m

m

m

m

m

m

sr

sr

m

m

m

sr

sr

sr

sr

m

U

I

I

U

R

U

I R

R

R

R

I

I

I

U

U

I

R

R

R

I R

R

U

R

U

I

I

U

R

U

I

R

R

R

R

U

U

U

U

U

U

U

U

V

+

=

=

=

=

=

+

=

=

=

=

=

=

+

=

=

=

=

=

+

+

+

+

=

=

=

=

=


______________________________________________________________________

7.26

Dane:

Szukane:

Wzory:

10

Cu

m

g

=

3

3

10800

12

0, 3294

/

0, 3294 10

/

t

h

s

R

k

mg C

g C

=

=

=

=

=

R

W

=

m

kIt

=


3

2

6

10

10

2,8109

0, 3294 10

10800

3, 55752

2

2,8109 3,14

2

3,1298

2

2

2 2

2 2

1269570

1, 26 10

sr

sr

m

sr

m

sr

sk

sk

m

I

A

kt

I

I

I

I

I

I

A

W

Pt

I

Rt

J

J

π

π

π

=

=

=

=

=

=

=

=

=

=

=

=

=

background image

______________________________________________________________________

7.27

Dane:

Szukane:

Wzory:







2

2

j

+

; I ćwiartka

3

j

; IV

1

3

j

− +

; II

1

j

− −

; III


______________________________________________________________________

7.28

Dane:

Szukane:

Wzory:

j

z

a

jb

z

re

ϕ

= +
=



2

2

r

a

b

=

+

arctg

0

0

arctg

0

0

arctg

0

0

arctg

0

0

0

0

2

0

0

2

b

dla

a

i b

a

b

dla

a

i b

a

b

dla

a

i b

a
b

dla

a

i b

a

dla

a

i b

dla

a

i b

ϕ

ϕ

ϕ

π

ϕ

π

π

ϕ

π

ϕ

=

>

= −

>

<

=

+

<

=

<

<

= +

=

>

= −

=

<

cos

sin

a

r

b

r

ϕ

ϕ

=

=

2

2

j

+

;I ćwiartka;

0

2

arctg

2

2

45

2

2

2

2 2

j

j

e

e

+ ⋅

=

1

j

;IV ćwiartka;

0

0

0

0

1

arctg

2

2

45

( 45

360 )

315

1

1

1

2

2

2

j

j

j

j

e

e

e

e

+

+ ⋅

=

=

=

1

3

j

− −

;III ćwiartka;

(

)

0

0

0

0

0

0

3

arctg

arctg 3

2

2

(60

180 )

( 120 )

( 120

360 )

240

1

( 1)

(

3)

2

2

2

2

2

j

j

j

j

j

j

e

e

e

e

e

e

π

+

+ −

=

=

=

=

=


______________________________________________________________________

7.29

background image

Dane:

Szukane:

Wzory:

j

z

a

jb

z

re

ϕ

= +
=



2

2

r

a

b

=

+

arctg

b

a

ϕ

=

cos

sin

a

r

b

r

ϕ

ϕ

=

=

cos

sin

j

re

r

j

ϕ

ϕ

ϕ

=

+

0

30

0

0

3

1

10

10 cos 30

10 sin 30

10

10

8, 65

5

2

2

j

e

j

j

j

=

+

=

+

=

+

0

45

0

0

0

0

2

2

2

2 cos( 45 )

2 sin( 45 )

2 cos 45

2( sin 45 )

2

2

2

2

2

2

j

e

j

j

j

j

=

+

=

+

= ⋅

=

0

90

0

0

3

3cos 90

3sin 90

3 0

3 1

3

j

e

j

j

j

=

+

= ⋅ + ⋅ =

0

0

3

1

3

18

18 cos 60

18sin 60

18

18

9

9 3

2

2

j

e

j

j

j

π

=

+

= ⋅ +

= +

2

0

0

0

0

0

0

3

0

0

4

4 cos120

4 sin120

4 cos(180

60 )

4 sin(180

60 )

1

3

4( cos 60 )

4sin 60

4

4

2

2 3

2

2

j

e

j

j

j

j

j

π

=

+

=

+

=

= −

+

= − ⋅ +

= − +

0

135

0

0

0

0

0

0

0

0

16

16 cos135

16 sin135

16 cos(180

45 )

16 sin(180

45 )

2

2

16 ( cos 45 )

16 sin 45

16

16

8 2

8 2

2

2

j

e

j

j

j

j

j

=

+

= ⋅

+

=

= ⋅ −

+

= − ⋅

+

= −

+


______________________________________________________________________

7.30

Dane:

Szukane:

Wzory:

j

z

a

jb

z

re

ϕ

= +
=



2

2

r

a

b

=

+

arctg

0

0

arctg

0

0

arctg

0

0

arctg

0

0

0

0

2

0

0

2

b

dla

a

i b

a

b

dla

a

i b

a

b

dla

a

i b

a
b

dla

a

i b

a

dla

a

i b

dla

a

i b

ϕ

ϕ

ϕ

π

ϕ

π

π

ϕ

π

ϕ

=

>

= −

>

<

=

+

<

=

<

<

= +

=

>

= −

=

<

background image

cos

sin

a

r

b

r

ϕ

ϕ

=

=


(

)

0

0

6

10 cos

sin

[ ]

6

6

3

1

10 cos

sin

10 cos 30

sin 30

10

10

5 3

5

6

6

2

2

10

10

j

I

j

A

I

j

j

j

j

r

I

e

π

π

π

π

π

=

+

=

+

=

+

=

+

=

+

=

=


______________________________________________________________________

7.31

Dane:

Szukane:

Wzory:

(

)

(

)

1

2

2

3 [ ]

2, 5

2, 5 [ ]

I

j

A

I

j

A

= +

=

I

=

j

z

a

jb

z

re

ϕ

= +
=

2

2

r

a

b

=

+

arctg

0

0

arctg

0

0

arctg

0

0

arctg

0

0

0

0

2

0

0

2

b

dla

a

i b

a

b

dla

a

i b

a

b

dla

a

i b

a
b

dla

a

i b

a

dla

a

i b

dla

a

i b

ϕ

ϕ

ϕ

π

ϕ

π

π

ϕ

π

ϕ

=

>

= −

>

<

=

+

<

=

<

<

= +

=

>

= −

=

<

cos

sin

a

r

b

r

ϕ

ϕ

=

=


background image

(

)

(

)

1

2

1

2

2

2

1

2

2

2

1

2

2

3 [ ]

2, 5

2, 5 [ ]

2

3 2, 5

2, 5

4, 5

0, 5 [ ]

2

3

13

2, 5

( 2, 5)

6, 25 6, 25

12, 5 [ ]

I

j

A

I

j

A

I

I

I

j

j

j

A

r

r

A

r

r

= +

=

= + = +

+

=

+

=

+

=

=

+ −

=

+

=

>


______________________________________________________________________

7.32

Dane:

Szukane:

Wzory:

0

120

230

230

A

j

B

V

V

V

e

V

=
=

AB

U

=

j

z

a

jb

z

re

ϕ

= +
=

2

2

r

a

b

=

+

arctg

0

0

arctg

0

0

arctg

0

0

arctg

0

0

0

0

2

0

0

2

b

dla

a

i b

a

b

dla

a

i b

a

b

dla

a

i b

a
b

dla

a

i b

a

dla

a

i b

dla

a

i b

ϕ

ϕ

ϕ

π

ϕ

π

π

ϕ

π

ϕ

=

>

= −

>

<

=

+

<

=

<

<

= +

=

>

= −

=

<

cos

sin

a

r

b

r

ϕ

ϕ

=

=


0

120

0

0

0

0

0

0

0

0

0

230

230

230(cos( 120 )

sin( 120 ))

230(cos120

( sin120 ))

230(cos(180

60 )

( sin(180 60 )))

1

3

230( cos 60 )

( sin 60 ))

230(

)

230(

))

115

115 3 [ ]

2

2

A

j

B

V

V

V

e

j

j

j

j

j

j

V

=
=

=

+

=

=

+ −

=

+ −

=

=

+ −

=

− +

= −

background image

(

)

2

2

230 ( 115

115 3)

345

115 3 [ ]

345

115 3

119025 39675

398, 4

AB

A

B

AB

U

V

V

j

j

V

r

=

=

− −

=

+

=

+

=

+


______________________________________________________________________

7.33

Dane:

Szukane:

Wzory:




j

z

a

jb

z

re

ϕ

= +
=

2

1

j

= −

2

2

r

a

b

=

+

arctg

0

0

arctg

0

0

arctg

0

0

arctg

0

0

0

0

2

0

0

2

b

dla

a

i b

a

b

dla

a

i b

a

b

dla

a

i b

a
b

dla

a

i b

a

dla

a

i b

dla

a

i b

ϕ

ϕ

ϕ

π

ϕ

π

π

ϕ

π

ϕ

=

>

= −

>

<

=

+

<

=

<

<

= +

=

>

= −

=

<

cos

sin

a

r

b

r

ϕ

ϕ

=

=


(

)(

)

( )

(

) (

)

(

)(

) (

)(

)

(

)(

)

( )

(

)

( )

(

)

(

)

( )

( )

2

2

2

2

2

2

2

1

1

1

1

1

2

1

1

1

1

1

1

1

1

1

2

1

1

2

1

2

2

4

1 4

4

(1

)

1

1

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

+

− = − + −

= − − =

+

=

+

+

= + + +

− − +

=

 

 

= +

+ −

+ −

=

= −

= − −

=

− = −

= − − = +


______________________________________________________________________

7.34

Dane:

Szukane:

Wzory:

background image




j

z

a

jb

z

re

ϕ

= +
=

2

1

j

= −

2

2

r

a

b

=

+

arctg

0

0

arctg

0

0

arctg

0

0

arctg

0

0

0

0

2

0

0

2

b

dla

a

i b

a

b

dla

a

i b

a

b

dla

a

i b

a
b

dla

a

i b

a

dla

a

i b

dla

a

i b

ϕ

ϕ

ϕ

π

ϕ

π

π

ϕ

π

ϕ

=

>

= −

>

<

=

+

<

=

<

<

= +

=

>

= −

=

<

cos

sin

a

r

b

r

ϕ

ϕ

=

=


(

)

(

)

2

2

2

2

2

2

2

1

1

1

1

1

2 1

1

1

1

1

2

1

1

1

1

1

2 1

1

1

1

1

2

1

1 1

1

1

1

1

1

1

1

1

2

2

1

1 1

1

1

1

1

1

1

1

1

2

2

1

1

2

2

2

6

2

6

2

6

2

6

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

+

+

+

+ + +

+

=

=

=

=

+

− − +

=

=

=

= −

+

+

=

=

=

=

+

+

+

+

+

=

=

=

=

+

+

= ⋅

=

= −

− −

=

− +

− +

− −

(

)

2

2

4

12

2

6

10

10

1

1

4

36

40

4

j

j

j

j

j

j

− −

+

+

− −

=

=

= −

+


______________________________________________________________________

7.35

background image

Dane:

Szukane:

Wzory:

3

4

2

4

I

j

Z

j

= +

= −



j

z

a

jb

z

re

ϕ

= +
=

2

1

j

= −

2

2

r

a

b

=

+

arctg

0

0

arctg

0

0

arctg

0

0

arctg

0

0

0

0

2

0

0

2

b

dla

a

i b

a

b

dla

a

i b

a

b

dla

a

i b

a
b

dla

a

i b

a

dla

a

i b

dla

a

i b

ϕ

ϕ

ϕ

π

ϕ

π

π

ϕ

π

ϕ

=

>

= −

>

<

=

+

<

=

<

<

= +

=

>

= −

=

<

cos

sin

a

r

b

r

ϕ

ϕ

=

=


(

)(

)

( )

2

3

4 2

4

6

12

8

16

6

4

1 16

22

4

I Z

j

j

j

j

j

j

j

⋅ = +

= −

+

= −

− −

=

IV ćwiartka

( )

2

2

0

0

0

22

4

500

10 5

22, 36

4

sin

0,1789

22, 36

10 18 '

22

cos

0, 9839

22, 36

10 18 '

lub

arctg

0

0

4

arctg

10 18 '

22

r

b

r

a

r

b

dla

a

i b

a

ϕ

α

ϕ

ϕ

α

ϕ

α

α

=

+ −

=

=

= =

= − = −

= =

= − = −

= −

>

<

= −

= −

0

10 18'

22, 36

j

I Z

e

⋅ =


______________________________________________________________________

7.36

background image

Dane:

Szukane:

Wzory:

0

15

75

5

30

j

j

I

e

Z

e

=

=



j

z

a

jb

z

re

ϕ

= +
=

2

1

j

= −

2

2

r

a

b

=

+

arctg

0

0

arctg

0

0

arctg

0

0

arctg

0

0

0

0

2

0

0

2

b

dla

a

i b

a

b

dla

a

i b

a

b

dla

a

i b

a
b

dla

a

i b

a

dla

a

i b

dla

a

i b

ϕ

ϕ

ϕ

π

ϕ

π

π

ϕ

π

ϕ

=

>

= −

>

<

=

+

<

=

<

<

= +

=

>

= −

=

<

cos

sin

a

r

b

r

ϕ

ϕ

=

=


0

0

0

0

15

75

(15

( 75 ))

60

0

0

0

0

5

30

5 30

150

150(cos( 60 )

sin( 60 ))

150(cos 60

( sin 60 ))

1

3

150

75

75 3

2

2

j

j

j

j

I Z

e

e

e

e

I Z

j

j

j

j

+ −

⋅ =

= ⋅

=

⋅ =

+

=

+ −

=

=

=

______________________________________________________________________

7.37

Dane:

Szukane:

Wzory:




j

z

a

jb

z

re

ϕ

= +
=

2

1

j

= −

2

2

r

a

b

=

+

background image

arctg

0

0

arctg

0

0

arctg

0

0

arctg

0

0

0

0

2

0

0

2

b

dla

a

i b

a

b

dla

a

i b

a

b

dla

a

i b

a
b

dla

a

i b

a

dla

a

i b

dla

a

i b

ϕ

ϕ

ϕ

π

ϕ

π

π

ϕ

π

ϕ

=

>

= −

>

<

=

+

<

=

<

<

= +

=

>

= −

=

<

cos

sin

a

r

b

r

ϕ

ϕ

=

=


5

5

j

; sprzężona to 5

5

j

+

j

; sprzężona to j

2

; sprzężona to 2

10

j

+

; sprzężona to 10

j

0

20

3

j

e

; sprzężona to

0

20

3

j

e

0

30

1,5

j

e

; sprzężona to

0

30

1,5

j

e


______________________________________________________________________

7.38

Dane:

Szukane:

Wzory:

0

0

90

30

380

76

j

j

U

e

Z

e

=

=



j

z

a

jb

z

re

ϕ

= +
=

2

1

j

= −

2

2

r

a

b

=

+

background image

arctg

0

0

arctg

0

0

arctg

0

0

arctg

0

0

0

0

2

0

0

2

b

dla

a

i b

a

b

dla

a

i b

a

b

dla

a

i b

a
b

dla

a

i b

a

dla

a

i b

dla

a

i b

ϕ

ϕ

ϕ

π

ϕ

π

π

ϕ

π

ϕ

=

>

= −

>

<

=

+

<

=

<

<

= +

=

>

= −

=

<

cos

sin

a

r

b

r

ϕ

ϕ

=

=


0

0

0

0

0

90

(90

30 )

60

30

380

380

5

76

76

j

j

j

j

U

e

e

e

Z

e

=

=

=


______________________________________________________________________

7.39

Dane:

Szukane:

Wzory:

1

2

2

4

2

6

Z

j

Z

j

= +

= −



j

z

a

jb

z

re

ϕ

= +
=

2

1

j

= −

2

2

r

a

b

=

+

arctg

0

0

arctg

0

0

arctg

0

0

arctg

0

0

0

0

2

0

0

2

b

dla

a

i b

a

b

dla

a

i b

a

b

dla

a

i b

a
b

dla

a

i b

a

dla

a

i b

dla

a

i b

ϕ

ϕ

ϕ

π

ϕ

π

π

ϕ

π

ϕ

=

>

= −

>

<

=

+

<

=

<

<

= +

=

>

= −

=

<

cos

sin

a

r

b

r

ϕ

ϕ

=

=

background image

(

) (

)

( )

2

1

2

1

2

2

2

2

2

4

2

6

4

4

1 24

4

12

8

24

2

4 2

6

4

2

4

2

28

4 4

2

112

16

56

8

120

40

6

2

4

2 4

2

4

2

20

Z Z

j

j

j

j

j

j

Z

Z

j

j

j

j

j

j

j

j

j

j

j

j

j

+

⋅ −

− −

+

=

=

=

=

+

+

+ −

+

+

+

=

=

=

= +

+

+


______________________________________________________________________

7.40

Dane:

Szukane:

Wzory:

200

311sin 314

R

u

t

=

=

sk

i

i

=

=

u

i

R

=


311sin 314

311

sin 314

1, 555sin 314 [ ]

200

200

1, 555 [ ]

1, 555

1,1[ ]

1, 41

2

m

m

sk

u

t

i

t

t A

R

I

A

I

i

A

= =

=

=

=

=

=


______________________________________________________________________

7.41

Dane:

Szukane:

Wzory:

40

2, 5

R

I

A

=

=

m

P

=

u

i

R

P

ui

=

=


( )

2

2

2

6, 25 2 40

500

m

m

P

I R

I

R

W

=

=

=

⋅ ⋅

=

______________________________________________________________________

7.42

Dane:

Szukane:

Wzory:

0, 6

220

50

L

H

U

V

f

Hz

=

=

=

L

x

I

=

=

2

L

x

L

fL

ω

π

=

=

background image


2

2 3,14 50 0, 6 188, 4

220

1,168

188, 4

L

L

x

L

fL

U

I

A

x

ω

π

=

=

= ⋅

⋅ ⋅

=

=

=


______________________________________________________________________

7.43

Dane:

Szukane:

Wzory:

0

0, 23

150

50

R

I

A

U

V

f

Hz

≈ Ω

=

=

=

L

=

2

L

x

L

fL

ω

π

=

=

L

U

I x

= ⋅


150

652

0, 23

652

652

2, 08

2

2 3,14 50

314

L

L

L

U

x

I

x

x

L

s

H

f

ω

π

=

=

=

=

=

=

=

Ω ≈

______________________________________________________________________

7.44

Dane:

Szukane:

Wzory:

1

2

12

1000

20

L

mH

f

Hz

f

kHz

=

=

=

x

B

=

=

2

L

x

L

fL

ω

π

=

=

L

U

I x

= ⋅

1

L

B

x

=


I

U

φ

=

π

/2

background image

1

1

1

1

2

2

2

2

2

75, 36

1

1

0, 01226

12, 26

75, 36

2

1507, 2

1

1

0, 00066

0, 66

2

1507, 2

L

L

L

x

f L

B

S

mS

x

x

f L

B

S

mS

f L

π

π

π

=

=

=

=

=

=

=

=

=

=

=

______________________________________________________________________

7.45

Dane:

Szukane:

Wzory:

22 sin 6280 [ ]

0, 25

i

t A

L

H

=

=



2

L

x

L

fL

ω

π

=

=

L

U

I x

= ⋅


(

)

0

0, 22 sin 6280

sin

6280 0, 25 1570

0, 22 sin 6280 1570

345, 4 sin 6280

90

m

L

L

i

t

i

I

t

x

L

u

ix

t

t

V

ω

ω

=
=

=

=

=

=

=

=

+

Ponieważ napięcie na elemencie indukcyjnym jest przyspieszone o

0

90 w stosunku do prądu.

czyli

345, 4 sin 6280

2

u

t

V

π

=

+

______________________________________________________________________

7.46

Dane:

Szukane:

Wzory:

10

50

C

F

f

Hz

µ

=
=

C

C

x

B

=

=

1

1

2

C

x

C

fC

ω

π

=

=

1

C

C

B

x

=

I

U

φ

=

π

/2

background image


6

6

6

3

1

1

1

10

318, 47

2

2 3,14 50 10 10

3140

1

1

3140 10

3,14 10

318, 47

C

C

C

x

C

fC

B

S

S

x

ω

π

=

=

=

=

⋅ ⋅ ⋅

=

=

=

=


______________________________________________________________________

7.47

Dane:

Szukane:

Wzory:

5

400 sin 314 [ ]

C

F

u

t V

µ

=

=

m

i

W

=

=

1

1

2

C

x

C

fC

ω

π

=

=

1

C

C

B

x

=

2

2

CU

W

=

400 sin 314 [ ]

sin

m

u

t V

U

U

t

ω

=

=

6

6

6

3

1

1

10

636, 94

314 5 10

1570

1

1

1570 10

1, 57 10

636, 94

C

C

C

x

C

B

S

S

x

ω

=

=

=

⋅ ⋅

=

=

=

=

2

6

2

2

5 10

400

5 16 10

0, 4

2

2

2

m

m

CU

W

J

⋅ ⋅

=

=

=

=

Ponieważ w idealnym kondensatorze prąd jest przyspieszony w stosunku do napięcia o

0

90

(

)

0

400 sin 314

0, 628sin 314

90

[ ]

636, 94

C

u

t

i

t

A

x

=

=

=

+

I

U

φ

=

π

/2

background image

______________________________________________________________________

7.48

Dane:

Szukane:

Wzory:

0, 35

135

50

I

A

U

V

f

Hz

=

=

=

C

=

1

1

2

C

x

C

fC

ω

π

=

=

C

U

I

x

=

6

1

0, 3

0, 3

7, 08 10

7, 08

2

2 3,14 50 135

42390

C

U

x

I

U

C

I

I

I

C

F

F

U

fU

ω

µ

ω

π

=

=

=

=

=

=

=

⋅ ⋅


______________________________________________________________________

7.49

Dane:

Szukane:

Wzory:

0,1

0,1

1000 : 5000

L

H

C

F

f

Hz

µ

=

=
=

C

=

1

1

2

C

x

C

fC

ω

π

=

=

2

L

x

L

fL

ω

π

=

=

3

6

1

1

1

10

796, 2

2

2 3,14 2000 0,1 10

1, 256

2

2 3,14 2000 0,1 1256

C

L

x

C

fC

x

L

fL

ω

π

ω

π

=

=

=

=

=

=

=

= ⋅

=


background image

0

500

1000

1500

2000

2500

3000

3500

1000

2000

3000

4000

5000

6000

f [Hz]


______________________________________________________________________

7.50

Dane:

Szukane:

Wzory:

6

3

0, 75

0, 75 10

15

15 10

50

C

F

F

U

kV

V

f

Hz

µ

=

=

=

= ⋅

=

I

=

1

1

2

C

x

C

fC

ω

π

=

=

L

U

I

x

=

6

6

1

1

1

10

4246

2

2 3,14 50 0, 75 10

235, 5

2

3, 53

1

2

C

L

x

C

fC

U

U

I

U

fC

A

x

fC

ω

π

π

π

=

=

=

=

=

⋅ ⋅

=

=

=

=


______________________________________________________________________










Wyszukiwarka

Podobne podstrony:
1a Zbiór zadań z elektrotechniki Aleksy Markiewicz rozwiązania od 1 1 do 1 64
1b Zbiór zadań z elektrotechniki Aleksy Markiewicz rozwiązania od 1 65 do 1 137
7b Zbiór zadań z elektrotechniki Aleksy Markiewicz rozwiązania od 7 51 do 7 88
2 Zbiór zadań z elektrotechniki Aleksy Markiewicz rozwiązania od 2 1do2 16
3 Zbiór zadań z elektrotechniki Aleksy Markiewicz rozwiązania od 3 1do3 71
5 Zbiór zadań z elektrotechniki Aleksy Markiewicz rozwiązania od 5 1do5 44
7c Zbiór zadań z elektrotechniki Aleksy Markiewicz rozwiązania od 7 89 do 7 121
mity od 1 do 50, ODK, Ikonografia Brus, Mity
mity od 1 do 50, ODK, Ikonografia Brus, Mity
8. Indukcja elektromagnetyczna. Prad przemienny, budownictwo PG, fizyka, zadania, zbior zadan
02 zbiór zadan rozwiązania

więcej podobnych podstron