1b Zbiór zadań z elektrotechniki Aleksy Markiewicz rozwiązania od 1 65 do 1 137

background image

1.65

Dane:

Szukane:

Wzory:

60

0, 5

4

26

a

w

E

V

I

A

R

R

=

=

= Ω

=

z

o

I

I

U

=

=

=

U

R

I

=

w

E

U

I R

= + ⋅

60

2

30

60

15

4

52

w

z

w

E

I

A

R

R

E

I

A

R

U

I R

=

=

=

+

=

=

=

= ⋅ =


___________________________________________________________________________
1.66

Dane:

Szukane:

Wzory:

2, 05

2

10

E

V

U

V

R

=

=

=

w

R

=

U

R

I

=

w

E

U

I R

= + ⋅

2

0, 2

10

0, 05

0, 25

0, 2

w

U

I

A

R

E U

R

I

=

=

=

=

=

=


___________________________________________________________________________
1.67

Dane:

Szukane:

Wzory:

6

10

w

E

V

R

=

=

ź

w

I

G

=

=

U

R

I

=

1

G

R

=

1

1

0, 25

4

6

1, 5

4

w

G

S

R

E

I

A

R

= = =

=

= =


___________________________________________________________________________
1.68

Dane:

Szukane:

Wzory:

background image

2

6

2

6

225

0,821

50

24

16

16 10

35 10

/

w

o

Al

E

V

R

l

m

R

S

mm

m

S m

γ

=

=

=

=

=

= ⋅

= ⋅

o

l

I

U

U

=

=

=

U

R

I

=

l

R

S

γ

=

w

U

E

I R

= − ⋅


6

6

2

2 50

0,179

35 10 16 10

l

l

R

S

γ

=

=

=

⋅ ⋅

225

225

9

24 0,821 0,179

25

o

w

l

E

I

A

R

R

R

=

=

=

=

+

+

+

+

9 24

216

225 9 0,821

217, 6

o

o

o

w

U

I R

V

U

E

I R

V

= ⋅

= ⋅

=

= − ⋅

=

− ⋅

9 0,179 1, 6

l

l

U

I R

V

= ⋅ = ⋅


___________________________________________________________________________
1.69

Dane:

Szukane:

Wzory:

240

4

0 12

w

E

V

R

I

A

=

= Ω

= ÷

I

R

=

=

U

R

I

=

w

U

E

I R

= − ⋅


przy U=220 V natężenie prądu wynosi 5 A

220

44

5

U

R

I

=

=

=

background image

-20

20

60

100

140

180

220

260

0

1

2

3

4

5

6

7

8

9

10

11

12

I [ A ]

[ V ]

Uo=f(I)

U_Rw=f(I)


___________________________________________________________________________
1.70

Dane:

Szukane:

Wzory:

2

6

2

6

240

10

0, 5

6

6 10

248

220

55 10

/

o

w

Cu

E

V

R

R

S

mm

m

l

m

U

V

S m

γ

=

=

=

=

= ⋅

=

=

= ⋅

ź

o

l

x

I

U

U

U

l

=

=
=

=

=

U

R

I

=

2

4

w

U

E

I R

l

R

S

d

S

γ

π

= − ⋅

=

=

6

6

248

0, 75

55 10 6 10

2

1, 5

p

l

p

l

R

S

R

R

γ

=

=

⋅ ⋅

= ⋅

=

11, 5

o

l

R

R

R

=

+

=

240

20

11, 5 0, 5

w

E

I

A

R

R

=

=

=

+

+

240 20 0, 5

230

20 10

200

230 200

30

ź

w

o

o

l

ź

o

U

E

I R

V

U

I R

V

U

U

U

V

= − ⋅

=

− ⋅

=

= ⋅

=

⋅ =

=

=

=

background image

230 220 10

x

ź

U

U

U

V

=

− =

=

ponieważ są dwa przewody to na jednym przewodzie spadek napięcia do miejsca
wyznaczonego to:

5

2

l

px

U

U

V

=

=

rezystancja przewodu do tego punktu:

5

0, 25

20

px

x

U

R

I

=

=

=

ponieważ rezystancja przewodu jest proporcjonalna do długości robimy prostą proporcję:

0, 25 248

82, 67

0, 75

x

x

l

x

x

l

R

l

R

l

R

R

l

m

R

=

=

⋅ =

=


___________________________________________________________________________
1.71

Dane:

Szukane:

Wzory:

1

2

3

8

4

7

5

1

w

U

V

R

R

R

R

=

= Ω

= Ω

= Ω

= Ω

v

U

=


U

R

I

=

w

U

E

I R

= − ⋅

1

2

3

16

R

R

R

R

= +

+

=

1

8

2

4

U

I

A

R

=

= =

2 16

32

32 2 1 34

ź

ź

w

U

I R

V

E

U

I R

V

= ⋅ = ⋅ =

=

+ ⋅

=

+ ⋅ =

po zwarciu

2

R natężenie prądu zmieni się na:

1

3

1

34

3, 4

1 4 5

3, 4 4 13, 6

z

w

v

z

E

I

A

R

R

R

U

I

R

V

=

=

=

+ +

+ +

= ⋅ =

⋅ =


___________________________________________________________________________
1.72

Dane:

Szukane:

Wzory:

1

2

9

20

5

0, 005

30

0, 03

w

E

V

R

I

mA

A

I

mA

A

=

=

=

=

=

=

1

2

U

U

=

=

U

R

I

=

w

U

E

I R

= − ⋅

background image


1

2

9 0, 005 20

9 0,1 8, 9

9 0, 030 20

9 0, 6

8, 4

w

w

U

E

I R

V

U

E

I R

V

= + ⋅

= −

= −

=

= + ⋅

= −

= −

=


___________________________________________________________________________
1.73

Dane:

Szukane:

Wzory:

1, 25

5

1, 2

z

E

V

I

A

U

V

=

=

=

o

R

=

U

R

I

=

w

U

E

I R

= − ⋅

1, 25

0, 25

5

w

z

E

R

I

=

=

=

1, 25 1, 2

0, 2

0, 25

1, 2

6

0, 2

w

w

U

E

I R

E U

I

A

R

R

= − ⋅

=

=

=

=

= Ω


___________________________________________________________________________
1.74

Dane:

Szukane:

Wzory:

5

50

z

I

A

I

A

=

=

w

R

R

=

U

R

I

=

w

U

E

I R

= − ⋅

50

9

5

50

50

w

z

w

w

E

E

R

I

E

I

R

R

E

E

E

E

R

R

I

=

=

=

+

= −

= −

=

9

9

50

50

9

50

50

w

E

R

E

E

R

E

⋅ ⋅

=

=

=


___________________________________________________________________________
1.75

background image

Dane:

Szukane:

Wzory:

6

3

1

E

V

I

A

R

=

=

= Ω

z

I

=

U

R

I

=

w

U

E

I R

= − ⋅

6

1 1

3

6

6

1

w

w

z

w

E

I

R

R

E

R

R

I

E

I

A

R

=

+

= − = − = Ω

=

= =


___________________________________________________________________________
1.76

Dane:

Szukane:

Wzory:

1, 5

1500

1, 2

v

w

R

k

R

=

Ω =

=

%

100%

E U

E

∆ =

=

U

R

I

=

w

U

E

I R

= − ⋅

w

w

v

v

U

E

I R

I R

E U

E

R

I

E

I R

= − ⋅

= −

=

= ⋅

1, 2

%

100%

100%

100%

0, 08 %

1500

w

v

I R

E U

E

I R

∆ =

=

=

=


___________________________________________________________________________
1.77

Dane:

Szukane:

Wzory:

1

2

3

0,1

6

12

4

0, 6

w

R

R

R

R

I

A

=

= Ω

=

= Ω

=

1

2

3

E

I

I

I

=
=

=

=

U

R

I

=

1

2

3

1

1

1

1

R

R

R

R

=

+

+

w

U

E

I R

= − ⋅

1

2

3

1

1

1

1

1

1

1

6

6

12

4

12

2

R

R

R

R

R

=

+

+

= +

+ =

= Ω

0, 6 2 1, 2

U

I R

V

= ⋅ =

⋅ =

background image

1, 2 0, 6 0,1 1, 26

w

E

U

I R

V

= + ⋅

=

+

=

1

1

2

2

3

3

1, 2

0, 2

6

1, 2

0,1

12

1, 2

0, 3

4

U

I

A

R

U

I

A

R

U

I

A

R

=

=

=

=

=

=

=

=

=


___________________________________________________________________________
1.78

Dane:

Szukane:

Wzory:

1

2

2

1,8

2

U

V

U

V

R

=

=

= Ω

w

E

R

=

=

U

R

I

=

1

2

1

1

1

R

R

R

=

+

w

U

E

I R

= − ⋅

1

1

2

2

2

1

2

2

1

2

2

1,8

1,8

1

z

z

U

I

A

R

R

R

U

I

A

R

=

= =

= = = Ω

=

=

=

1

1

2

2

1

1

2

2

1

2

2

1

2

1

1

2

1

2

2

1

(

)

0, 2

0, 25

0,8

w

w

w

w

w

w

w

w

E

U

I R

E

U

I

R

U

I R

U

I

R

U

U

I

R

I R

R I

I

U

U

U

U

R

I

I

=

+ ⋅

=

+ ⋅

+ ⋅

=

+ ⋅

= ⋅

− ⋅

=

=

=

=

1

1

2 1 0, 25

2, 25

w

E

U

I R

V

=

+ ⋅

= + ⋅

=


___________________________________________________________________________
1.79

Dane:

Szukane:

Wzory:

2

6, 3

6

0, 2

12

w

E

V

U

V

R

R

=

=

=

=

1

R

=

U

R

I

=

1

2

1

1

1

R

R

R

=

+

w

U

E

I R

= − ⋅

background image

6, 3 6

0,3

1,5

0, 2

0, 2

w

w

w

U

E

I R

I R

E U

E U

I

A

R

= − ⋅

= −

=

=

=

=

1

2

1

2

2

1

2

6

4

1, 5

1

1

1

1

1

1

4 12

6

12 4

U

R

I

R

R

R

R

R

R

R R

R

R

R

=

=

= Ω

=

+

= −

=

=

= Ω


___________________________________________________________________________
1.80

Dane:

Szukane:

Wzory:

'

120

4

20

20

w

E

V

R

R

R

=

= Ω

=

=

'

U

U

=

=

U

R

I

=

1

2

1

1

1

R

R

R

=

+

w

U

E

I R

= − ⋅

'

1

1

1

10

2

z

z

R

R

R

R

R

= +

= =

'

'

120

120

8, 57

10 4

14

120

120

5

20 4

24

w

z

w

z

w

w

U

E

I R

I R

E

I R

E

I

A

R

R

E

I

A

R

R

= − ⋅

= − ⋅

=

=

=

+

+

=

=

=

=

+

+

'

5 20 100

8, 57 10

85, 7

z

U

I R

V

U

I R

V

= ⋅ = ⋅

=

= ⋅

=

⋅ =


___________________________________________________________________________
1.81

Dane:

Szukane:

Wzory:

background image

9

10

0,15

w

E

V

R

I

A

=

=

=

'

''

U

U

U

=

=

=

U

R

I

=

1

2

1

1

1

R

R

R

=

+

w

U

E

I R

= − ⋅

'

'

'

''

''

''

9 0,15 10

7, 5

7, 5

50

0,15

9

9

0, 257

25 10

35

2

9 0, 257 10

6, 43

9

9

0, 3375

16, 67 10

26, 67

3

9 0, 3375 10

5, 63

w

ż

ż

w

w

ż

w

w

U

E

I R

V

U

R

I

E

I

A

R

R

U

E

I R

V

E

I

A

R

R

U

E

I

R

V

= − ⋅

= −

⋅ =

=

=

=

=

=

=

+

+

= − ⋅

= −

⋅ ≈

=

=

=

+

+

= − ⋅

= −

⋅ ≈


___________________________________________________________________________
1.82

Dane:

Szukane:

Wzory:

120

10

160

3, 2

R

R

S

S

U

V

I

A

U

V

I

A

=

=

=

=

1

2

E

R

R

=

=

=

U

R

I

=

1

2

1

1

1

R

R

R

=

+

w

U

E

I R

= − ⋅

(

)

120 160

40

5,88

3, 2 10

6,8

S

S

w

R

R

w

S

S

w

R

R

w

R

w

S

w

R

S

w

S

R

R

S

R

S

w

R

S

E

U

I

R

E

U

I

R

U

I

R

U

I

R

I

R

I

R

U

U

R I

I

U

U

U

U

R

I

I

=

+ ⋅

=

+ ⋅

+ ⋅

=

+ ⋅

− ⋅

+ ⋅

=

=

=

=

=

160 3, 2 5,88 178,82

S

S

w

E

U

I

R

V

=

+ ⋅

=

+

=

160

50

3, 2

120

12

10

S

S

S

R

R

R

U

R

I

U

R

I

=

=

=

=

=

=

background image

1

2

1

2

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

(

)

(

)

0

50

600

0

S

S

R

R

S

S

R

S

R

S

S

R

S

S

S

R

S

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R R

R R

R

R R

R R

R R

R R

R

R R

R R

R

R

= +

=

=

+

=

+

+

=

=

=

+

=

+

=

2

'

2

2

4

2500 4 600 100

50 10

20

2

2

50 10

30

2

2

b

ac

b

R

a

b

R

a

∆ = −

=

− ⋅

=

− − ∆

=

=

=

− + ∆

+

=

=

=

1

2

50 30

20

S

R

R

R

=

=

=


___________________________________________________________________________
1.83

Dane:

Szukane:

Wzory:

1, 5

0, 6

16, 2

o

w

E

V

R

R

=

=

=

1

2

3

o

U

I

U

U

U

=

=

=

=

=

U

R

I

=

w

U

E

I R

= − ⋅

3

4, 5

4, 5

0, 25

3

1,8 16, 2

18

o

w

E

I

A

R

R

=

=

=

=

+

+

1

1

1

2

3

1, 5 0, 25 0, 6

1, 35

w

U

E

I R

V

U

U

U

=

− ⋅

=

=

=

=

0, 25 16, 2

4, 05

o

U

I R

V

= ⋅ =

=


___________________________________________________________________________
1.84

Dane:

Szukane:

Wzory:

'

o

o

U

U

=

=

U

R

I

=

background image

'

1, 5

1

5

500

o

w

w

E

V

R

R

R

=

= Ω

= Ω

=

w

U

E

I R

= − ⋅

'

'

'

'

8

12

12

0, 02362

8

8 500

508

11,81

8

12

12

0, 02222

8

40 500

540

11,11

o

w

o

o

w

o

E

I

A

R

R

U

I R

V

E

I

A

R

R

U

I R

V

=

=

=

=

+

+

= ⋅ ≈

=

=

=

=

+

+

= ⋅ ≈


___________________________________________________________________________
1.85
Czy wartość napięcia źródła może być większa od jego siły elektromotorycznej?

Tak. W przypadku gdy pracuje jako odbiornik.
Na przykład, jest to w przypadku ładowania akumulatora z prostownika.

___________________________________________________________________________
1.86

Dane:

Szukane:

Wzory:

1

1

2

8

0, 35

6,15

0, 02

500

w

w

E

V

R

E

V

R

R

=

=

=

=

=

o

I

U

=

=

U

R

I

=

w

U

E

I R

= − ⋅

2

1

1

2

1

1

8 6,15

1,85

5

0, 35 0, 02

0, 37

8 1, 75

6, 25

w

w

o

w

E

E

I

A

R

R

U

E

I R

V

=

=

=

=

+

+

=

− ⋅

= −

=


___________________________________________________________________________
1.87

Dane:

Szukane:

Wzory:

0, 06

0,1

0, 04

220

400

g

m

p

R

R

R

U

V

I

A

=

=

=

=

=

g

m

g

E

E

U

=

=
=

U

R

I

=

w

U

E

I R

= − ⋅

background image

220 400 0,1 180

400 0, 04 16

236

236 400 0, 06

260

m

m

p

p

g

p

g

g

m

E

U

I R

V

U

I R

V

U

U

U

V

E

U

I R

V

= − ⋅

=

=

= ⋅

=

=

= +

=

=

+ ⋅

=

+

=


___________________________________________________________________________
1.88

Dane:

Szukane:

Wzory:

1

2

110

1, 5

0,5

1, 5

10

w

o

w

R

E

V

R

E

V

R

=

=

=

=

=

1

2

U

U

=

=

U

R

I

=

w

U

E

I R

= − ⋅

1

1

1

1

2

1

2

2

2

20

30

30

0, 25

20

10 110

120

0, 25 110

27, 5

20

3

30 4, 5

34, 5

0, 23

20

3

10 30 110

150

0, 23 110

25, 3

w

o

w

w

E

I

A

R

R

U

I R

V

E

E

I

A

R

R

R

U

I

R

V

=

=

=

=

+

+

= ⋅ =

=

⋅ + ⋅

+

=

=

=

=

+ ⋅

+

+

+

= ⋅ =

=


___________________________________________________________________________
1.89
Jest rozwiązane w Zbiorze zadań i nie chciało mi się przepisywać

___________________________________________________________________________
1.90

Dane:

Szukane:

Wzory:

1

2

3

4

5

1

4

2

3

5

1 5

10

8

4

6

15

4

7

1

W

E

E

V

E

V

E

V

E

V

R

R

R

R

R

R

=

=

=

=

=

=

=

=

= Ω

= Ω

= Ω

1 5

1 5

R

E

A I

U

U

V

=
=

=

U

R

I

=

w

U

E

I R

= − ⋅


ponieważ

1

2

4

(

)

E

E

E

+

+

>

3

5

(

)

E

E

+

to

3

5

E i E są odbiornikami dlatego U > E

prąd w obwodzie płynie zgodnie z ruchem wskazówek zegara.
Dlatego przyjąłem ten sam kierunek rozpatrywania potencjałów.

background image

1

2

3

4

5

1

2

3

4

5

1

1

1

1

2

2

2

2

3

3

3

3

4

10 10 8 4 6

10

0, 2

5

5 15 4 4 15 7

50

0, 2 15

3

10 0, 2

9,8

0, 2 4

0,8

10 0, 2

9,8

0, 2 4

0,8

8 0, 2

8, 2

w

R

E

w

R

E

w

R

E

w

R

E

E

E

E

E

I

A

R

R

R

R

R

R

U

I R

V

U

E

I R

V

U

I R

V

U

E

I R

V

U

I R

V

U

E

I R

V

U

I

+

+

+ − + −

=

=

=

=

+ +

+

+

+

+ + + + +

= ⋅ =

⋅ =

=

− ⋅

= −

=

= ⋅

=

⋅ =

=

− ⋅

= −

=

= ⋅

=

⋅ =

=

+ ⋅

= +

=

= ⋅

4

4

4

5

5

5

5

0, 2 15

3

4 0, 2

3,8

0, 2 7

1, 4

6 0, 2

6, 2

E

w

R

E

w

R

V

U

E

I R

V

U

I R

V

U

E

I R

V

=

⋅ =

=

− ⋅

= −

=

= ⋅

=

⋅ =

=

+ ⋅

= +

=


___________________________________________________________________________
1.91

Dane:

Szukane:

Wzory:

1

2

3

1

2

3

1 3

2

10

2

0

W

A

E

E

E

V

R

R

R

R

V

=

=

=

=

=

=

= Ω

=

AB

BC

CA

U

U

U

=

=

=

U

R

I

=

w

U

E

I R

= − ⋅


kierunek rozpatrywania przeciwnie do ruchu wskazówek zegara.

1

2

3

1

2

3

1

1

1

1

2

2

2

2

3

3

2 2 2

6

0,1667

3

6 10 10 10

36

0,1667 10 1, 667

2 0,1667 2

2 0, 333 1, 667

0,1667 10 1, 667

2 0,1667 2

2 0, 333 1, 667

0,1667 10 1, 667

w

R

E

w

R

E

w

R

E

E

E

I

A

R

R

R

R

U

I R

V

U

E

I R

V

U

I R

V

U

E

I R

V

U

I R

V

+

+

+ +

=

=

=

+ +

+

+ + +

= ⋅ =

⋅ =

=

− ⋅

= −

⋅ = −

=

= ⋅

=

⋅ =

=

− ⋅

= −

⋅ = −

=

= ⋅

=

⋅ =

3

3

2 0,1667 2

2 0, 333 1, 667

E

w

U

E

I R

V

=

− ⋅

= −

⋅ = −

=

3

3

3

1

2

2

2

2

1

3

1

1

0

1, 667

1, 667 1, 667

0

0 1, 667

1, 667

1, 667 1, 667

0

0 1, 667

1, 667

1, 667 1, 667

0

CR

R

C

CR

E

BR

C

R

B

BR

E

AR

B

R

A

AR

E

V

U

V

V

V

U

V

V

V

U

V

V

V

U

V

V

V

U

V

V

V

U

V

= −

= −

=

+

= −

+

=

=

= −

= −

=

+

= −

+

=

=

= −

= −

=

+

= −

+

=

background image

Wykres potencjałów

-2

-1,5

-1

-0,5

0

0

5

10

15

20

25

30

35

40

R [

]

V [V]


___________________________________________________________________________
1.92

Dane:

Szukane:

Wzory:

1

2

1

2

4, 5

26

0, 4

0, 6

0

p

W

W

O

E

E

V

R

R

R

V

=

=

=

=

=

=

A

B

CO

V

V

U

=
=

=

U

R

I

=

w

U

E

I R

= − ⋅

1

2

1

2

1

1

1

2

2

2

9

9

0, 3333

1 26

27

0, 3333 26

8, 667

4, 5 0, 3333 0, 4

4, 5 0,1333

4, 3667

4, 5 0, 3333 0, 6

4, 5 0, 2

4, 3

w

w

P

P

P

E

w

E

w

E

E

I

A

R

R

R

U

I R

V

U

E

I R

V

U

E

I R

V

+

=

=

=

+

+

+

= ⋅

=

=

=

− ⋅

=

=

=

=

− ⋅

=

=

=

1

2

0

4, 3667

4, 3667 8, 667

4, 3

4, 3 4, 3

0

A

E

B

A

p

O

B

E

V

U

V

V

V

U

V

V

V

U

V

= +

=

=

=

= −

=

= −

+

=

1

2

4, 3667

4, 3

CO

A

O

CO

B

O

U

V

V

V

U

V

V

V

=

=

=

= −


___________________________________________________________________________
1.93

Dane:

Szukane:

Wzory:

background image

1

2

1

2

2

0, 5

0, 7

0

W

W

E

E

E

E

R

R

U

=

=

=

=

=

R

=

U

R

I

=

w

U

E

I R

= − ⋅

1

2

1

2

2

2

2

2

1, 2

(1, 2

)

2

(1, 2

)

2

0

(1, 2

)

0, 7

0

2

(1, 2

)

1, 4

0

2

[1, 2

1, 4]

0

2

( 0, 2

)

0

2

0, 2

0

0, 2

w

W

E

w

w

E

E

E

I

R

R

R

R

I

R

E

I

R

E

U

E

I R

E

I R

V

I

R

I

I

R

I

I

R

I

R

R

R

+

=

=

+

+

+

+

=

+

=

= − ⋅

− ⋅

=

+

− ⋅

=

+

− ⋅

=

+ −

=

+

=

+ =

=

lub troszkę innym podejściem

1

2

1

1

1

0, 5 0

(1, 2

)

0, 5 0

2

(1, 2

)

2

1, 2

1

2

0, 2

E

E

R

E

W

R

U

U

U

U

E

I R

U

I R

E

I

I R

I

R

I

I R

I

R

I

I

R

R

R

R

+

=

=

− ⋅

= ⋅

− ⋅

+ = ⋅

+

− ⋅

+ = ⋅

+

− = ⋅ ⋅

+ − = ⋅

=


___________________________________________________________________________
1.94

Dane:

Szukane:

Wzory:

R

=

U

R

I

=

w

U

E

I R

= − ⋅

background image

1, 2

0, 02

2, 5

115

O

W

E

V

R

I

A

U

V

=

=

=

=


ponieważ bateria jako odbiornik to:

60

60

60 1, 2 2, 5 60 0, 02

72 3

75

2, 5

115

75 2, 5

16

E

w

E

R

R

E

R

U

E

I

R

U

V

U

I R

U

R

U

U

U

R

R

=

+ ⋅

=

+

⋅ ⋅

=

+ =

= ⋅
=

=

+

=

+

=


___________________________________________________________________________
1.95

Dane:

Szukane:

Wzory:

1

2

3

1

1

9

24

2

E

E

V

E

V

E

E

I

I

=

=

= −

=

1

E

=

U

R

I

=

w

U

E

I R

= − ⋅

1

3

2

1

1

2

3

2

1

1

2

3

2

1

1

2

3

2

1

1

2

3

2

1

3

2

1

1

2

1

2

1

1

1

2

1

2

1

1

1

1

1

1

2

(

) 2

(

) 2

24 9

24 9

(

) 2

15

(15

) 2

15

30 2

3

15

5

E

E

E

E

I

R

R

E

E

E

I

R

R

E

E

E

I

R

R

E

E

E

I

R

R

E

E

E

E

E

E

R

R

R

R

E

E

R

R

R

R

E

E

E

E

E

E

V

=

+

+

=

+

+

⋅ =

+

+

=

+

+

=

+

+

− +

− −

=

+

+

+

=

+

=

=

=


___________________________________________________________________________
1.96

background image

Dane:

Szukane:

Wzory:

1

2

3

1

2

4

3

2

3

1

24

60

12

9

20

0, 5

1

W

W

W

E

V

E

V

E

V

R

R

R

R

R

R

R

=

=

=

=

= Ω

=

=

=

=

= Ω

W tym wydaniu tego Zbioru
Zadań jest małe przeoczenie,
zapomnieli podać R2, w
starszym wydaniu było
podane co teraz jest
uwzględnione w powyższych
danych

1

2

3

V

V

V

U

U

U

I

=

=

=

=

U

R

I

=

w

U

E

I R

= − ⋅


Ponieważ

2

(

)

E >

1

3

(

)

E

E

+

to

1

3

E i E są odbiornikami dlatego dla nich U > E

1

2

3

1

2

3

1

2

3

4

1

1

1

2

2

3

3

24 60 12

24

0, 4

1 0, 5 0, 5 9 9 20 20

60

24 0, 4 1

24, 4

60 0, 4 0, 5

59,8

12 0, 4 0, 5 12, 2

w

w

w

V

w

V

w

E

w

E

E

E

I

A

R

R

R

R

R

R

R

U

E

I R

V

U

E

I R

V

U

E

I R

V

− +

− +

=

=

=

=

+

+

+ +

+

+

+

+

+ + +

+

=

+ ⋅

=

+

⋅ =

=

− ⋅

=

=

=

+ ⋅

= +

=


___________________________________________________________________________
1.97

Dane:

Szukane:

Wzory:

1

2

3

1

2

4

3

2

3

1

24

60

12

9

20

0, 5

1

W

W

W

E

V

E

V

E

V

R

R

R

R

R

R

R

=

=

=

=

= Ω

=

=

=

=

= Ω

W tym wydaniu tego Zbioru
Zadań jest małe przeoczenie,
zapomnieli podać R2, w
starszym wydaniu było
podane co teraz jest
uwzględnione w powyższych
danych


Wykres potencjałów

U

R

I

=

w

U

E

I R

= − ⋅

background image


1

2

3

1

2

3

1

2

3

4

24 60 12

24

0, 4

1 0, 5 0, 5 9 9 20 20

60

w

w

w

E

E

E

I

A

R

R

R

R

R

R

R

− +

− +

=

=

=

=

+

+

+ +

+

+

+

+

+ + +

+

prąd w obwodzie płynie zgodnie z ruchem wskazówek zegara.
Dlatego przyjąłem ten sam kierunek rozpatrywania potencjałów.
.

4

1

1

1

2

2

2

3

3

3

0 0, 4 20

8

8 24 0, 4 1

32, 4

32, 4 0, 4 9

36

36 60 0, 4 0, 5

23,8

23,8 0, 4 9

20, 2

20, 2 0, 4 20 12, 2

12, 2 12 0, 4

F

O

E

F

w

D

E

C

D

W

B

C

A

B

O

A

w

V

V

I R

V

V

V

E

I R

V

V

V

I R

V

V

V

E

I R

V

V

V

I R

V

V

V

I R

V

V

V

E

I R

=

− ⋅

= −

= −

=

− − ⋅

= − −

⋅ = −

=

− ⋅ = −

⋅ = −

=

+

− ⋅

= − +

=

=

− ⋅

=

⋅ =

=

− ⋅

=

=

=

− ⋅

=

− −

0, 5

0 V

=

background image

-40

-30

-20

-10

0

10

20

30

0

10

20

30

40

50

60

70

R [

]

V [V]

Wykres potencjałów

R4

R1

R2

R3


___________________________________________________________________________
1.98

Dane:

Szukane:

Wzory:




Jak zmienią się wskazania
woltomierzy, po otwarciu
wyłącznika ‘w’




Po otwarciu wyłącznika w obwodzie prąd nie będzie płynął i woltomierze będą s.em. ‘E’.
Czyli wskazanie

2

V zwiększy się, a

1

V i

3

V zmniejszy się.


___________________________________________________________________________
1.99

background image

Dane:

Szukane:

Wzory:

1

2

3

12

24

12

16

U

V

R

R

R

=

=

=

=

1 3

1 3

U

I

=

=

U

R

I

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

1

2

1

2

3

3

3

3

3

3

1

2

1

1

1

2

2

2

24 12

8

24 12

8 16

24

12

0, 5

24

0, 5 16

8

12 8

4

4

0,1667

24

4

0, 3333

12

z

z

z

z

R R

R

R

R

R

R

R

U

I

A

R

U

I

R

V

U

U

U

V

U

U

U

U

I

A

R

U

I

A

R

=

=

= Ω

+

+

=

+

= + =

=

=

=

= ⋅

=

⋅ =

= −

= − =

=

=

=

=

=

=

=

=


___________________________________________________________________________
1.100

Dane:

Szukane:

Wzory:

2

3

z

R

R

= Ω

= Ω


Jak połączyć

U

R

I

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

1

1

1

2

2

1 2

3

z

R R

R R

R

R

R

R

R

R

R

R

=

=

= = Ω

+

= + = + = Ω


Odp. Dwa równolegle z jednym szeregowo.

___________________________________________________________________________
1.101

Dane:

Szukane:

Wzory:

U

R

I

=

background image

1

2

3

4, 4

22

15

14,8

V

V

U

V

R

R

R

R

=

=

=

=

= ∞

1

2

3

O

O

U

I

I

I

I

=

=

=

=

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

=

+

1

1

1

2

2

2

2

3

1

2

3

3

3

3

3

1

4, 4

0, 2

22

0, 2 15

3

4, 4 3

7, 4

7, 4

0, 5

14,8

0, 5 0, 2

0, 7

V

O

O

U

I

A

R

I

I

U

I

R

V

U

U

U

V

U

U

U

I

A

R

I

I

I

A

=

=

=

=

= ⋅

=

⋅ =

=

+

=

+ =

=

=

=

=

= + =

+

=


___________________________________________________________________________
1.102

Dane:

Szukane:

Wzory:

44

AB

R

=

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

=

+

2

1

1

1

1

44

(

)

(

)

44(

)

2

132

66

AB

R

R

R

R

R

R

R

R

R R

R

R R

R

R

R

R

R

R

=

+

+

+ +

=

+

+

=

+ +

=

=


___________________________________________________________________________
1.103

Dane:

Szukane:

Wzory:

1

2

40

15

60

Z

R

R

R

=

=

=

X

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

=

+

background image

1

2

1

1

1

1

1

1

40

15

60

1

1

1

40

60

15

3 2

1

120

15

1

1

120

15

15 120

120 15 105

Z

X

X

X

X

X

X

X

R

R

R

R

R

R

R

R

R

R

=

+

+

=

+

+

=

+

− =

+

=

+

+ =

=

− =


___________________________________________________________________________
1.104

Dane:

Szukane:

Wzory:

R

X

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

=

+


a)

4

X

R

R

=

b)

0, 25

4

X

R

R

R

= =

c)

1

1

1

X

R

R

R

R

R

=

+

+

+

1

1

1

2

2

1

2

2

X

X

X

R

R

R

R

R

R

R

=

+

=

=

d)

2

2

X

R

R

R

R

= + =

e)

3

4

3

3

3

X

R

R

R

R

R

R

+

= + =

=

f)

1

1

1

3

X

R

R

R

=

+

background image

1

1

3

3

3

1

4

3

3

0, 75

4

X

X

X

R

R

R

R

R

R

R

R

=

+

=

=

=

g)

5

2

2, 5

2

2

2

X

R

R

R

R

R

R

R

R

= + + =

+ =

=

h)

1

1

1

1

2

X

R

R

R

R

=

+ +

1

1

2

2

2

2

2

1

5

2

2

0, 4

5

X

X

X

R

R

R

R

R

R

R

R

R

=

+

+

=

=

=

i)

X

Z

R

R

R

= +


___________________________________________________________________________
1.105

Dane:

Szukane:

Wzory:

1

2

3

3

2

4

3

R

R

R

I

A

= Ω

= Ω

= Ω

=

1

2

U

U

=

=

I

U

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

=

+

1

1

3 3

9

U

I R

V

= ⋅ = ⋅ =

2

3

2

3

2

2

3

2 4

4

6

3

4

3

4

3

X

X

R R

R

R

R

U

I R

V

U

U

=

=

= Ω

+

= ⋅

= ⋅ =

=


___________________________________________________________________________
1.106

Dane:

Szukane:

Wzory:

20

b

R

U

=

=

I

U

R

=

1

2

1

1

1

R

R

R

=

+

background image

2

18

82

20

a

a

I

mA

R

R

I

mA

=

=

=

=

1

2

R

R

R

= +

20

(

)

2 (18 82)

200

0, 2

20 2 18

0, 018

0, 2

11,11

0, 018

a

a

a

a

a

b

b

a

a

b

b

U

I

R

R

mV

V

U

U

I

I

I

I

I

I

mA

A

U

R

I

= ⋅

+

= ⋅

+

=

=

=

= +

= − =

− =

=

=

=

=


___________________________________________________________________________
1.107

Dane:

Szukane:

Wzory:

2

1

2

3

4

2

3

18

3

6

I

A

R

R

R

R

=

= Ω

= Ω

= Ω

= Ω

Z

O

R

U

=

=

I

U

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

2

2

2

34

3

4

2

34

34

2

34

1

1

1

2

2 18

36

3 6

9

36

4

9

2 4

6

6 3 18

18 36

54

54

9

6

z

U

I

R

V

R

R

R

U

I

A

R

I

I

I

A

U

I R

V

U

U

U

V

U

R

I

= ⋅

= ⋅ =

=

+

= + = Ω

=

=

=

= +

= + =

= ⋅ = ⋅ =

=

+

= +

=

=

=

= Ω


___________________________________________________________________________
1.108

Dane:

Szukane:

Wzory:

R

AB

AC

R

R

=

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

background image


a)
rezystancja zastępcza na lewo od R podłączonego do pkt. A B

2

2

2

3

2

5

2

3

3

L

R

R

R

R

R

R

R

R

R

R

+

= +

=

=

+

po prawej taki sam układ

5

3

P

L

R

R

R

=

=

po takim uproszczeniu zostało tylko połączenie równoległe

1

1

1

1

1

1

1

1

5

5

3

3

1

3

5

3

5

5

5

1

11

5

5

11

AB

L

P

AB

AB

AB

AB

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

=

+ +

=

+ +

=

+

+

=

=

b)
do pewnego momentu jest to samo, czyli:

2

2

2

3

2

5

2

3

3

L

R

R

R

R

R

R

R

R

R

R

+

= +

=

=

+

1

1

2

1

1

1

1

1

5

3

1

3

5

8

5

5

5

5

8

X

L

X

X

R

R

R

R

R

R

R

R

R

R

R

=

+ =

+

=

+

=

=

2

1

5

13

8

8

X

X

R

R

R

R

R

R

=

+ =

+ =

background image

1

1

1

1

13

2

8

1

8

13

1

13

13

2

1

16

26

13

26

26

26

1

55

26

26

55

O

O

O

O

O

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

=

+ +

=

+

+

=

+

+

=

=


___________________________________________________________________________
1.109

Dane:

Szukane:

Wzory:

1

2

3

4

5

5

12

6

3

4

15

R

R

R

R

R

I

A

= Ω

=

= Ω

= Ω

= Ω

=

1 5

1 5

O

O

R

U

I

U

=

=

=

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +


4

3

1

4

3

2

1

5

2

2

3

2

2

3

1

18

2

9

2 4

6

6 12

72

4

6 12

18

4 5

9

Z

Z

Z

Z

Z

Z

O

Z

R R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

=

=

= Ω

+

=

+

= + = Ω

=

=

=

= Ω

+

+

=

+ = + = Ω

background image

1

1

1

2

1

2

2

2

5

2

34

5

1

34

4

4

34

3

3

15 9 135

15

15 5

75

135 75

60

60

5

12

15 5 10

10 2

20

20

6, 667

3

20

3, 333

6

O

O

O

Z

U

I R

V

I

I

A

U

I R

V

U

U

U

V

U

I

A

R

I

I

I

A

U

I

R

V

U

I

A

R

U

I

A

R

= ⋅

= ⋅ =

= =

= ⋅ = ⋅ =

=

=

=

=

=

=

= − = − =

= ⋅

= ⋅ =

=

=

=

=

=

=


___________________________________________________________________________
1.110

Dane:

Szukane:

Wzory:

1

4

2

3

6

5

5

2

4

12

120

R

R

R

R

R

R

U

V

=

= Ω

=

=

= Ω

=

=

1 5

O

I

U

=

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

5

5

5

5

6

6

4

5

6

2

1

3

2

4

2

2

1

1

3

4

4

4

5

4

2

120

10

12

120

30

4

10 30

40

1

1

1

1

1

1

5

4

2 4

12

12

2, 4

5

40 2, 4

96

96

24

4

96

16

6

40 2

80

120 80 96

296

O

U

I

A

R

U

I

A

R

I

I

I

A

R

R

R

R

R

R

U

I

R

V

U

I

A

R

U

I

A

R

R

U

I

R

V

U

U

U

U

V

=

=

=

=

=

=

= + = +

=

=

+

+

= +

=

+

=

Ω =

= ⋅ =

=

=

=

=

=

=

=

+

= ⋅

=

⋅ =

=

+

+

=

+ +

=

background image


___________________________________________________________________________
1.111

Dane:

Szukane:

Wzory:

1

2

3

4

5

6

6

1

5

12

12

21

4

36

R

R

R

R

R

R

U

V

= Ω

= Ω

=

=

=

= Ω

=

O

O

I

U

=

=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

6

6

6

6

3

3

36

3

6

4

1

2

4

36

5

6

4

5

5

5

5

5

36

36

9

4

36

3

12

3 9 12

1

1

1

1

1

1

3

12

1 5

12

12

4

3

12 4

48

36 48

84

84

4

21

4 12 16

O

O

U

I

A

R

U

I

A

R

I

I

I

A

R

R

R

R

R

R

U

I

R

V

U

U

U

V

U

U

U

I

A

R

I

I

I

A

=

=

=

=

=

=

= + = + =

=

+

+

=

+

=

+

=

Ω = Ω

=

⋅ = ⋅ =

=

+

=

+

=

=

=

=

=

= +

= + =


___________________________________________________________________________
1.112

Dane:

Szukane:

Wzory:

1

2

3

15

12

30

150

600

a

a

I

mA

R

I

mA

I

mA

I

mA

=

=

=

=

=

1

2

3

R

R

R

=

=

=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

background image

1

30

30

1

1

2

3

30

2

150

150

2

3

150

3

1

2

3

600

600

3

15 12 180

0,18

30 15 15

0, 015

0,18

12

0, 015

150 15 135

0,135

0,18 0, 015

0,135 (

)

600

a

a

a

a

b

b

a

a

b

a

b

b

a

a

R

b

a

b

b

a

U

I

R

mV

V

I

I

I

I

I

I

mA

A

U

R

R

R

I

I

I

I

I

I

I

mA

A

U

U

U

R

R

R

I

I

I

I

I

I

= ⋅

= ⋅ =

=

= +

= − =

− =

=

+

+

=

=

=

= +

= − =

− =

=

+

=

+

=

+

= +

= − =

3

2

150

3

2

1

15

585

0, 585

0,18 0, 015

0, 015

0, 585

a

R

R

b

mA

A

U

U

U

U

R

R

R

− =

=

+

+

=

+

⋅ +

=

1

2

3

3

1

2

3

2

1

3

1

2

1

2

1

2

1

2

2

1

1

2

12

0,18 0, 015

0,135 (

)

0,18 0, 015

0, 015

0, 585

12 (

)

0,18 0, 015 (12 (

))

0,135 (

)

0,18 0, 015 (12 (

)) 0, 015

0, 585

0,18 0,18

0,135 (

) 0, 015 (

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

+

+

=

+

=

+

+

⋅ +

=

= −

+

+

+

=

+

+

+

+

=

+

=

+

+

1

2

2

1

1

2

1

2

1

1

2

2

1

2

1

1

2

1

2

)

0,18 0,18 0, 015

0, 585

0, 015 (

)

0, 36

0,15

0,15

0, 36

0, 585

0, 015

0, 015

0, 015

0, 36 0,15

0,15

0, 36

0, 6

0, 36 0,15

0,15

0, 6

0, 36 0,15 0, 6

0

0,15

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

+

+

+

=

⋅ +

+

=

⋅ +

=

⋅ +

⋅ +

⋅ −

=

=

=

=

=

=

3

1

2

, 27

1,8

0,15

12 (

) 12 (0, 6 1,8)

9, 6

R

R

R

=

= −

+

= −

+

=


A może ? innym podejściem ?

background image

1

30

30

1

2

3

1

1

2

3

1

2

3

2

150

3

2

1

2

3

1

2

3

600

3

2

3

1

3

2

1

15 12 180

0,18

0,18

0, 015

0,18 0, 015

0,135

(

)

0,18 0, 015 (

)

0, 585

0, 0

a

a

a

b

a

a

b

a

a

b

a

a

a

a

b

a

a

a

a

U

I

R

mV

V

I

I

I

U

I

R

R

R

U

I

I

R

R

R

R

R

R

I

I

I

U

I

R

I

I

R

R

R

R

R

I

I

I

U

I

R

R

I

I

R

R

R

R

= ⋅

= ⋅ =

=

=

+

=

+

+

− =

+

+

=

+

+

=

+

+ ⋅

− =

+

+

=

+

=

+

+ ⋅

+

− =

+

+

=

1

2

3

3

1

2

3

2

1

3

1

2

1

2

1

2

1

2

2

1

1

2

1

0,18

15

0,18 0, 015

0,135

0,18 0, 015 (

)

0, 585

12

0,18 0, 015 (12

)

0,135

0,18 0, 015 (12

) 0, 015

0, 585

0,135

0,135

0,18 0,18 0, 015

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

=

+

+

+

=

+

+

+

=


= − −

+

− −

=

+

+

− −

+

=

⋅ +

=

+

2

1

1

2

2

1

2

1

2

1

1

1

2

1

0, 015

0, 585

0,18 0,18 0, 015

0, 015

0, 015

0,135

0,135

0, 36 0, 015

0, 015

0, 585

0, 36 0, 015

0,15

0,15

0, 36

0, 6

0, 36

R

R

R

R

R

R

R

R

R

R

R

R

R

R

⋅ =

+

⋅ −

⋅ +

⋅ +

=

⋅ −

⋅ =

⋅ +

=

⋅ =

1

0, 36

0, 6

0, 6

R

=

=

background image

2

2

2

0,15 0, 6 0,15

0, 36

0,15

0, 36 0, 09

0, 27

1,8

0,15

R

R

R

+

=

=

=

=

3

12 0, 6 1,8

9, 6

R

= −

=

Eee, nic szybciej nie poszło. Dobrze że chociaż wynik tak sam wyszedł ☺.

___________________________________________________________________________
1.113

Dane:

Szukane:

Wzory:

120

30

U

V

R

=

=

1

2

AC

FB

EB

I

I

R

U

U

=

=

=
=
=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

=

+

1

2

1

1

1

2

4

2

4

8

8

40

4

2

6

6

120

2

2

60

120

1

4

120

AC

AC

R

R

R

R

R

R R

R

R

R

R

R

U

I

A

R

U

I

A

R

=

+

=

=

=

=

+

=

=

=

=

=

=

1

2

2

2 30

60

3

1 3 30

90

30

2

1 2 30

60

60 60

0

CB

CF

FB

CF

CB

CE

EB

CE

CB

U

I R

V

U

I

R

V

U

U

U

V

U

I

R

V

U

U

U

V

= ⋅ = ⋅

=

= ⋅

= ⋅ ⋅

=

=

=

= ⋅

= ⋅ ⋅

=

=

=

=


___________________________________________________________________________
1.114

Dane:

Szukane:

Wzory:

1

2

3

4

5

I

I

I

I

I

=

=

=

=

=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

=

+

background image

1

6

2

3

4

5

120

45

220

76

240

360

U

V

R

R

R

R

R

R

=

=

=

=

=

=

=

4

5

1

4

5

2

1

3

1

2

3

1

2

1

3

6

1

6

1

2

6

2

1

6

1

1

2

2

240 360

86400

144

600

600

144 76

220

220 220

110

220 220

45 110 45

200

120

0, 6

200

120 0, 6 45 0, 6 45

66

Z

Z

Z

Z

Z

Z

Z

R R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

U

I

I

A

R

U

U

U

U

U

U

U

U

U

I R

I

R

V

I

=

=

=

=

+

=

+

=

+

=

=

=

=

+

+

= +

+

=

+

+

=

= =

=

=

=

+

+

= −

= − ⋅ − ⋅

=

⋅ −

=

2

2

2

1

2

3

3

1

2

3

3

3

2

45

3

45

2

3

45

4

4

45

5

5

66

0, 3

220

0, 6 0, 3

0, 3

0, 3 76

22,8

66 22,8

43, 2

43, 2

0,18

240

43, 2

0,12

360

U

A

R

I

I

I

I

I

I

A

U

I

R

V

U

U

U

U

U

U

V

U

I

A

R

U

I

A

R

=

=

=

= +

= + =

=

= ⋅

=

=

=

+

=

=

=

=

=

=

=

=

=


___________________________________________________________________________
1.115

Dane:

Szukane:

Wzory:

1

2

4

3

5

6

44

40

120

20

35

45

U

V

R

R

R

R

R

R

=

=

=

=

=

=

=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

background image

1

2

3

4

5

6

I

I

I

I

I

I

I

=

=

=

=

=

=
=

1

1

3

1

2

2

1

2

3

5

6

3

4

4

3

4

5

4

2

5

4

4

4

4

4

4

5

6

3

40 20

60

60 120

40

60 120

35 45

80

80 120

48

80 120

40 48

88

44

0, 5

88

0, 5 48

24

24

0, 2

120

24

0,

80

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

U

I

A

R

U

I R

V

U

I

A

R

U

I

I

R

= +

=

+

=

=

=

=

+

+

=

+

=

+

=

=

=

=

+

+

=

+

=

+

=

=

=

=

= ⋅

=

=

=

=

=

= =

=

=

2

2

2

2

2

2

1

3

1

3

0, 5 40

20

20

0,1667

120

20

0, 3333

60

Z

Z

Z

Z

Z

A

U

I R

V

U

I

A

R

U

I

I

A

R

= ⋅

=

=

=

=

=

= =

=

=


___________________________________________________________________________
1.116

Dane:

Szukane:

Wzory:

1

2

5

7

8

3

4

6

3

4

12

6

12

R

R

R

R

R

R

R

R

= Ω

=

=

=

= Ω

=

= Ω
=

AE

CF

R

R

=
=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

background image

1

4

1

4

2

5

2

5

6

6

3

8

3

8

7

7

3 6

2

3 6

4 4

2

4 4

2 2

4

4 12

3

4 12

12 4

3

4 12

3 3

6

6 4

2, 4

4 6

AB

BC

AC

AB

BC

AC

AD

AC

DE

FE

AD

DE

FE

AE

FE

R R

R

R

R

R R

R

R

R

R

R

R

R

R

R

R

R

R R

R

R

R

R

R

R

R

R

R

R

R

=

=

= Ω

+

+

=

=

= Ω

+

+

=

+

= + = Ω

=

=

= Ω

+

+

=

=

= Ω

+

+

=

+

= + = Ω

=

=

=

+

+

1

4

1

4

2

5

2

5

6

6

3

8

3

8

7

3 6

2

3 6

4 4

2

4 4

2 2

4

4 12

3

4 12

12 4

3

4 12

4 3

7

7 3

2,1

7 3

AB

BC

AC

AB

BC

AC

AD

AC

DE

DF

DE

DF

AD

CF

DF

AD

R R

R

R

R

R R

R

R

R

R

R

R

R

R

R

R

R

R R

R

R

R

R

R

R

R

R

R

R

R

=

=

= Ω

+

+

=

=

= Ω

+

+

=

+

= + = Ω

=

=

= Ω

+

+

=

=

= Ω

+

+

=

+

= + = Ω

=

=

=

+

+


___________________________________________________________________________
1.117

Dane:

Szukane:

Wzory:

1

2

5

7

8

3

4

6

24

3

4

12

6

12

AE

U

V

R

R

R

R

R

R

R

R

=

= Ω

=

=

=

= Ω

=

= Ω
=

5

8

I

I

=
=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

background image

1

4

1

4

2

5

2

5

6

6

3

8

3

8

7

7

3 6

2

3 6

4 4

2

4 4

2 2

4

4 12

3

4 12

12 4

3

4 12

3 3

6

6 4

2, 4

4 6

AB

BC

AC

AB

BC

AC

AD

AC

DE

FE

AD

DE

FE

AE

FE

R R

R

R

R

R R

R

R

R

R

R

R

R

R

R

R

R

R R

R

R

R

R

R

R

R

R

R

R

R

=

=

= Ω

+

+

=

=

= Ω

+

+

=

+

= + = Ω

=

=

= Ω

+

+

=

=

= Ω

+

+

=

+

= + = Ω

=

=

=

+

+

7

7

7

7

8

8

5

5

24

10

2, 4

24

6

4

10 6

4

4 3 12

12

3

4

24 12 12

12

3

4

3 2

6

6

1, 5

4

FE

FE

FE

AC

FE

AE

R

R

DE

R

DE

DE

AD

DE

AD

DE

DE

R

AC

BC

R

BC

BC

U

I

A

R

U

I

A

R

I

I

I

I

I

I

A

U

I

R

V

U

I

A

R

U

U

U

U

U

U

V

U

I

A

R

U

I

R

V

U

I

A

R

=

=

=

=

=

=

= +

= − = − =

=

= ⋅ =

=

=

=

=

+

= −

=

− =

=

=

=

=

= ⋅ =

=

= =


___________________________________________________________________________
1.118

Dane:

Szukane:

Wzory:

5

1

2

5

7

8

3

4

6

1

3

4

12

6

12

I

A

R

R

R

R

R

R

R

R

=

= Ω

=

=

=

= Ω

=

= Ω
=

CE

U

=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

background image

1

4

1

4

2

5

2

5

6

6

3

8

3

8

7

7

3 6

2

3 6

4 4

2

4 4

2 2

4

4 12

3

4 12

12 4

3

4 12

3 3

6

6 4

2, 4

4 6

AB

BC

AC

AB

BC

AC

AD

AC

DE

FE

AD

DE

FE

AE

FE

R R

R

R

R

R R

R

R

R

R

R

R

R

R

R

R

R

R R

R

R

R

R

R

R

R

R

R

R

R

=

=

= Ω

+

+

=

=

= Ω

+

+

=

+

= + = Ω

=

=

= Ω

+

+

=

=

= Ω

+

+

=

+

= + = Ω

=

=

=

+

+


5

5

5

5

2

2

5

2

5

6

6

6

7

7

7

1 4

4

4

1

4

1 1

2

2 2

4

4 4

8

8

2

0, 667

12

3

2

8

2

2, 667

3

3

8

2

4 10

3

3
2

2

8 10

18

3

3

AB

AB

AB

AB

AC

AB

AC

AD

AB

AD

EC

AC

U

I

R

V

U

I

A

R

I

I

I

A

U

I

R

V

U

U

U

V

U

I

A

A

R

I

I

I

A

A

U

I

R

V

U

U

U

V

= ⋅

= ⋅ =

=

= =

= + = + =

=

= ⋅ =

=

+

= + =

=

=

=

=

=

+ = + =

=

=

= ⋅ =

=

+

= +

=


___________________________________________________________________________
1.119

Dane:

Szukane:

Wzory:

5

1

2

3

4

5

2

2

3

14

30

25

50

1

o

w

I

A

R

R

R

R

R

R

R

=

= Ω

= Ω

=

=

=

=

= Ω

z

U

E

I

R

=

=

=

=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

background image

45

5

5

45

4

4

3

4

5

3

3

3

2

3

45

2

2

2

2

3

1

1

2

1

2 50 100

100

4

25

4 2

6

6 30 180

180 100

280

280

20

14

20 6

26

26 2

52

26 3

78

52 280 78

410

410 26 1

436

o

o

o

w

z

U

I R

V

U

I

A

R

I

I

I

A

U

I R

V

U

U

U

V

U

I

A

R

I

I

I

A

U

IR

V

U

IR

V

U

U

U

U

V

E

U

IR

V

R

=

= ⋅

=

=

=

=

= + = + =

=

= ⋅

=

=

+

=

+

=

=

=

=

= + =

+ =

=

=

⋅ =

=

=

⋅ =

=

+

+

=

+

+

=

= +

=

+ ⋅ =

410

15, 77

26

U

I

=

=

=


___________________________________________________________________________
1.120

Dane:

Szukane:

Wzory:

1

2

3

200

100

300

U

V

R

R

R

=

=

=

=

2

2

Z

O

U

U

=
=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +


1

2

2

2

200

200

0, 5

100 300

400

0, 5 300 150

O

O

O

U

I

A

R

R

U

I

R

V

=

=

=

=

+

+

= ⋅

=

=

2

3

2

3

1

2

300 300

150

300 300

200

200

0,8

100 150

250

0,8 150 120

Z

ZW

Z

W

ZW

Z

R R

R

R

R

U

I

A

R

R

U

I

R

V

=

=

=

+

+

=

=

=

=

+

+

=

=

=


___________________________________________________________________________
1.121

Dane:

Szukane:

Wzory:

background image

1

2

3

3

2

100

900

1

9, 5

AB

U

V

R

R

R

k

R

k

=

=

=

= Ω
=

U

=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

=

+


1

1

2

1

1

2

3

1

2

3

1

2

1

2

1

9,5

9,5

9,5

2

9,5

2

9,5

9,5

9,5

1

9,5

2

2

0, 02

100

(

)

0, 02 (100 900)

20

(

)

1 1

0, 5

(

)

1 1

20 9, 5

380

0, 5

380 20

400

AB

Z

k

k

Z

k

k

k

Z

k

k

k

Z

k

k

k

U

I

A

R

U

I

R

R

V

R

R

R

R

k

R

R

R

U

U

U

I

R

U

I

R

U

U

R

R

U

R

U

V

R

U

U

U

U

U

V

=

=

=

= ⋅

+

=

+

=

+

=

=

=

+

+

+

=

=

=

=

=

=

=

=

+

=

+

=

+

=


___________________________________________________________________________
1.122

Dane:

Szukane:

Wzory:

120

40

80

O

P

d

g

U

V

R

R

R

R

=

=

=

=

O

O

U

I

=

=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

=

+


background image

2

40

2

40 40

20

40

40

40 20

60

120

2

60

2 20

40

40

1

40

P

d

g

d

d

d

P

d

d

O

Z

d

O

g

Z

O

d

Z

O

O

O

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

U

I

A

R

U

U

I R

V

U

I

A

R

=

+

=

+

=

=

=

=

=

=

+

+

=

+

=

+

=

=

=

=

=

= ⋅

= ⋅

=

=

=

=


___________________________________________________________________________
1.123

Dane:

Szukane:

Wzory:

120

40

80

O

P

d

U

V

R

R

R

const

x

=

=

=

=

wykresy

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

=

+


x =liniowe położenie suwaka potencjometru, zakres < 0;1 >, tzn. 1 oznacza położenie suwaka
w maksymalnym położeniu czyli 100% zakresu.
a)
Odbiornik podłączony.

background image

2

2

2

2

2

2

2

(1

)

(1

)

(

)

(1

)

(1

) (

)

C

g

d

g

d

d

O

Z

d

O

O

Z

O

O

O

O

C

g

Z

O

O

O

O

O

O

O

C

O

O

O

C

R

R

R

R

x R

R

x R

R

R

R

R

R

x R R

R

x R

R

x R R

x R

x R

R

x R R

R

R

R

x R

x R

R

x R

R

x

x R

R R

x R R

x R

R R

x

R

x R R

x R R

R

x R

R

x R

R

x

R

x R

R R

R

x

=

+

= − ⋅
= ⋅

=

+

⋅ ⋅

=

⋅ +

⋅ ⋅

− ⋅ ⋅ ⋅ +

+ ⋅ ⋅

=

+

= − ⋅ +

=

⋅ +

⋅ +

− ⋅ ⋅

+ ⋅

+ ⋅ ⋅

+ ⋅

− ⋅

− ⋅ ⋅

+ ⋅ ⋅

=

=

⋅ +

⋅ +

− ⋅

+ ⋅

+ ⋅

=

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

(

)

(1

)

(

)

(

) (1

)

(1

)

(

) (1

)

(

O

C

O

O

O

g

g

O

O

O

O

O

O

O

O

O

R

R

U

I

R

U

x R

R

I

x

R

x R

R R

U

U

U

U

I R

U

I

x R

U

x R

R

U

x R

R

x R

U

U

x R

U

x

R

x R

R R

x

R

x R

R R

U

x R

R R

x

U

x R

R R

x

R

U

U

U

x

R

x R

R R

⋅ +

=

⋅ ⋅ +

=

− ⋅

+ ⋅

+ ⋅

= −

= − ⋅

= − ⋅ − ⋅

⋅ ⋅ +

⋅ ⋅ +

⋅ − ⋅

= −

⋅ − ⋅ = −

− ⋅

+ ⋅

+ ⋅

− ⋅

+ ⋅

+ ⋅

⋅ ⋅

+ ⋅

⋅ −

⋅ ⋅

+ ⋅

− ⋅

= −

= −

− ⋅

+ ⋅

+ ⋅

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

)

(

)

(

)

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

x R R

x

R

x R

R R

U

x

R

x R

R R

U

x R

R R

x

R

x R R

U

x

R

x R

R R

x

R

x R

R R

x R

R R

x

R

x R R

U

U

x

R

x R

R R

x R R

x R

R

U

U

U

x

R

x R

R R

R

x

R

x R

R

− ⋅ ⋅

− ⋅

+ ⋅

+ ⋅

⋅ − ⋅

+ ⋅

+ ⋅

− ⋅ ⋅

+ ⋅

− ⋅

− ⋅ ⋅

=

− ⋅

+ ⋅

+ ⋅

− ⋅

+ ⋅

+ ⋅

− ⋅

− ⋅

+ ⋅

+ ⋅ ⋅

= ⋅

− ⋅

+ ⋅

+ ⋅

⋅ ⋅

= ⋅

= ⋅ ⋅

− ⋅

+ ⋅

+ ⋅

− ⋅ + ⋅ +

2

2

2

2

200

40

80

80 40

8000

200

80

80

40

2

2

1

O

O

O

O

x R

x

U

U

x

R

x R

R

x

x

x

x

U

x

x

x

x

⋅ ⋅

= ⋅

=

− ⋅ + ⋅ +

− ⋅ + ⋅ +

=

=

+

+

+

+


b)
Przerwa na odbiorniku, czyli niepodłączony.

background image

(1

)

(1

)

(1

)

(1

)

(1

)

200

g

d

g

d

d

O

g

g

O

O

O

R

R

R

R

x R

R

x R

R

R

x

U

I

R

U

U

U

U

I R

U

I

x R

U

U

x R

U

U

x R

U

U

U

x

U

U

xU

R

R

U

xU

U

x

=

+

= − ⋅
= ⋅

=

=

= −

= − ⋅

= − ⋅ − ⋅

⋅ − ⋅

= − ⋅ − ⋅ = −

= − ⋅ − = − +

=
=

Uo=f(x)

0

50

100

150

200

0

0,2

0,4

0,6

0,8

1

X

odb.jest

odb. odł

ą

czony


background image

___________________________________________________________________________
1.124

Dane:

Szukane:

Wzory:

300

120

200

100

2

O

P

P

d

g

d

U

V

U

V

R

R

R

R

R

const

x

=

=

=

=

=

=

=

O

R

=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

(

)

(

)

300 100

120

10000 100

100

30000

120

10000

d

O

Z

d

O

g

Z

O

Z

O

Z

g

Z

d

O

O

d

O

d

O

g

d

O

d

O

O

g

d

O

d

O

d

O

d

O

d

O

d

O

O

g

d

O

d

O

g

d

g

O

d

O

O

O

O

O

R

R

R

R

R

U

I

R

R

U

I R

U

U

R

R

R

R

R

U

U

R

R

R

R

R

R

R

R

R

U

U

R R

R

R

R

R

R

R

R

U R

R

U R

R

U

R R

R

R

R

R R

R R

R

R

R

R

R

R

=

+

=

+

= ⋅

=

+

=

+

+

+

=

+

+

+

+

⋅ ⋅

=

=

+

+

+

+

=

+

+

=

200

120 (100 2

)

300

12000 240

300

12000

300

240

12000

200

60

O

O

O

O

O

O

O

O

R

R

R

R

R

R

R

R

+

+

=

+

=

=

=

=


___________________________________________________________________________
1.125

Dane:

Szukane:

Wzory:

background image

100

24

P

AB

R

R

=

=

d

g

R

R

=
=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

2

2

2

2

1

2

(

)

0

100

2400

0

4

10000 4 2400

400

100 20

40

2

2

100 20

60

2

2

10

P

d

g

g

P

d

d

g

AB

d

g

d

P

d

AB

d

P

d

d

P

d

d

AB

P

AB

P

d

P

d

d

d

P

AB

P

d

d

d

d

g

P

d

g

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

b

ac

b

R

a

b

R

a

R

R

R

R

=

+

=

=

+

=

+

=

=

+

=

+

=

∆ = −

=

− ⋅

=

− − ∆

=

=

=

− + ∆

+

=

=

=

=

=

0 60

40

=


___________________________________________________________________________
1.126

Dane:

Szukane:

Wzory:

P

R

l

=

=

( )

AB

R

f y

=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

background image

2

2

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

P

P

P

d

P

P

d

g

g

P

d

g

P

d

g

AB

d

g

P

P

AB

P

P

P

P

AB

P

P

AB

P

AB

P

AB

R

l

l

R

R

l

y

R

R

l

R

R

R

R

R

R

l

y

R

R

l

R

R

R

R

R

y

l

y

R

R

l

l

R

y

l

y

R

R

l

l

R

R

y

l

y

l

l

R

R

y l

y

l

R

y

l

y

l

R

y l

y

R

y l

y

R

l

l

R

y

R

y

l

l

=

=

=

+

=

=

=

+

⋅ ⋅

=

⋅ +

⋅ ⋅

⋅ −

=

⋅ + −

⋅ −

=

+ −

⋅ −

=

=

⋅ −

( )

AB

R

f y

=

AB

R to wartość funkcji , y to argument

jest to parabola, taka odwrócona z maksimum przy

2

l

y

=

AB

R > 0 to

0 ;

y

l


___________________________________________________________________________
1.127

Dane:

Szukane:

Wzory:

1

2

4

3

6

1

6

3

AC

U

V

R

R

R

R

=

= Ω

=

= Ω

= Ω

BD

U

=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

background image

1

1

3

2

2

4

1

3

2

4

6

6

1, 5

1 3

4

6

6

0, 5

6 6

12

1, 5 3

4, 5

0, 5 6

3

4, 5 3 1, 5

AC

AC

CD

CB

BD

CD

CB

U

I

A

R

R

U

I

A

R

R

U

I R

V

U

I

R

V

U

U

U

V

=

=

= =

+

+

=

=

=

=

+

+

= ⋅

=

⋅ =

= ⋅

=

⋅ =

=

=

− =


___________________________________________________________________________
1.128

Dane:

Szukane:

Wzory:

1

2

4

3

3

1

6

3

BD

B

D

U

V

V

V

R

R

R

R

=

=

= Ω

=

= Ω

= Ω

AB

U

=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +


Uziemiamy pkt D,
zaznaczamy spadki napięcia na rezystorach (UWAGA na kierunki prądów),
przesuwamy się w jedną stronę np.: D_C_B

1

3

1

2

4

2

1

3

2

4

1

2

3

3

6

3

3

6

BD

CD

BC

CD

BC

CD

BC

BD

U

U

U

U

U

U

I R

I

U

I

R

I

U

I R

I

R

I

I

= −

+

= −

+

= ⋅

= ⋅

= ⋅

= ⋅

= ⋅ − ⋅

= − ⋅ + ⋅


potem w drugą: D_A_B


1

1

1

2

2

2

1

1

2

2

1

2

3

1

6

3

3

1

6

BD

AD

AB

AD

AB

AD

AB

U

U

U

U

U

U

I R

I

U

I

R

I

I R

I

R

I

I

=

=

= ⋅ = ⋅

= ⋅

= ⋅

= ⋅ − ⋅
= ⋅ − ⋅

background image

1

2

1

2

1

2

2

2

2

2

2

2

1

3

3

6

3

1

6

3

6

3

(3

6) 3

6

3

9

18

6

12

12

1

3 ( 1) 6

3 6

3

I

I

I

I

I

I

I

I

I

I

I

I

A

I

A

= − ⋅ + ⋅

= ⋅ − ⋅

= + ⋅

= − + ⋅ ⋅ + ⋅
= − − ⋅ + ⋅

⋅ = −

= −

= + − ⋅ = − = −

1

1

3

(

)

3 (1 3)

12

AC

U

I R

R

V

=

+

= − ⋅ + = −

napięcie wyszło ujemne dlatego że jest odwrotna biegunowość w stosunku do założenia.
Polega to na przyjęciu odpowiedniej biegunowości

BD

U

, bo w treści nie ma o tym mowy.


gdyby w tym rozwiązaniu przyjąć że

BD

U

na potencjał odwrotny tzn.

3

BD

B

D

U

V

V

V

=

= −

,

lub przyjąć kierunek prądów na odwrotny to wynik byłby dodatni . Nie zmienia to faktu, że i
ten wyliczony jest dobry (patrz rozwiązany w Zbiorze Zadań przykład 1.127).

Lub troszkę innym spojrzeniem.
Dla niektórych może prostszy sposób , a dla innych może być bardziej nieczytelnym.
Rysujemy koło rezystorów wektory spadków napięć. Jeżeli przy lewym dolnym jest dłuższy
to prawy dolny krótszy. A u góry na odwrót ( lewy górny krótszy , prawy dłuższy) . Teraz
równania: od dolnego dłuższego/większego odejmujemy dolny krótszy i to równa się
naszemu danemu ‘U’.
U góry tak samo od dłuższego/większego odejmujemy krótszy i to równa się też podanemu
‘U’. Oczywiście wektor to odpowiedni prąd razy właściwy rezystor.

___________________________________________________________________________
1.129

Dane:

Szukane:

Wzory:

1

2

4

3

6

1

6

3

AC

U

V

R

R

R

R

=

= Ω

=

= Ω

= Ω

A

B

I

I

=
=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +


A) otwarty

background image

1

3

2

4

1

1

1

1

1

1

1 3

6 6

1

1

1

4

12

1

3

1

12

12

12

3

4

6

2

3

R

R

R

R

R

R

R

R

R

U

I

A

R

=

+

+

+

=

+

+

+

= +

=

+

=

= Ω

=

= =

B) zamknięty

3

4

1

2

1

2

3

4

1 6

3 6

6

18

2,857

1 6

3 6

7

9

6

2,1

2,857

R R

R R

R

R

R

R

R

U

I

A

R

=

+

=

+

= +

=

+

+

+

+

=

=

=


___________________________________________________________________________
1.130

Dane:

Szukane:

Wzory:

1

2

3

4

36

2

3

6

4

AC

U

V

R

R

R

R

=

= Ω

= Ω

= Ω

= Ω

BD

I

=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

background image

3

4

1

2

1

2

3

4

1

1

1

1

2

2

2

2

1

1

1

2

2

1

1

2

1

2

2

2

2

2

2

2

1

2 3

6 4

6

24

3, 6

2 3

6 4

5

10

36

10

3, 6

3

2

10

10

3

(10

) 2

3

20 2

5

20

4

10 4

6

R R

R R

R

R

R

R

R

U

I

A

R

U

I R

U

I

R

I

R

I R

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

A

I

A

=

+

=

+

= +

=

+

+

+

+

=

=

=

= ⋅
= ⋅

= ⋅

= +

⋅ = ⋅

= +

= −

⋅ =

⋅ =

− ⋅

⋅ =

=

= − =

2

3

3

2

4

4

3

3

4

4

3

4

3

4

3

4

3

4

4

4

4

4

4

3

6

4

10

10

(10

) 6

4

60 6

4

6

10 6

4

U

I

R

U

I

R

I

R

I

R

I

I

I

I

I

I

I

I

I

I

I

I

I

I

A

I

A

= ⋅
= ⋅

= ⋅

= +

⋅ = ⋅

= +

= −

⋅ = ⋅

− ⋅ = ⋅

=

= − =

1

3

1

3

6 4

2

BD

BD

I

I

I

I

I

I

A

= +

= − = − =


___________________________________________________________________________
1.131

Dane:

Szukane:

Wzory:

U

=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

background image

1

2

3

4

3

2

8

8

2

BD

I

A

R

R

R

R

=

= Ω

= Ω

= Ω

= Ω

1

2

R

R

R

= +

1

3

4

2

1

1

1

1

2

2

2

2

1

1

2

1

2

3

3

2

4

4

3

3

4

4

3

4

8

2

8

2

BD

BD

I

I

I

I

I

I

U

I R

U

I

R

I

R

I R

I

I

U

I

R

U

I

R

I

R

I

R

I

I

= +

= +

= ⋅
= ⋅

= ⋅

⋅ = ⋅

= ⋅
= ⋅

= ⋅

⋅ = ⋅

2

1

3

4

1

3

4

2

1

3

4

2

2

3

3

2

2

3

3

2

3

2

3

2

8

2

8

2

3

3

3

3

8

(

3) 2

8

(

3) 2

8

2

6

8

2

6

2

6

8

8

2

6

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

⋅ = ⋅

⋅ = ⋅

= +

= +

= +

= +

⋅ =

+ ⋅

⋅ =

+ ⋅

⋅ = ⋅ +

⋅ = ⋅ +

⋅ +

=

⋅ = ⋅ +

3

3

3

3

3

3

3

3

2

6

8

2

6

8

4

12

8

6

8

64

4

12 48

60

60

1

I

I

I

I

I

I

I

I

A

⋅ +

⋅ = ⋅

+

⋅ +

⋅ =

+

= ⋅ + +

=

=

background image

3

2

1

3

4

2

1

1

1

2

3

3

1

2

2

6

2 1 6

1

8

8

3 1 3

4

3 1 3

4

4 2

8

1 8

8

8 8 16

I

I

A

I

I

A

I

I

A

U

I R

V

U

I

R

V

U

U

U

V

⋅ +

⋅ +

=

=

=

= + = + =

= + = + =

= ⋅ = ⋅ =

= ⋅

= ⋅ =

=

+

= + =


___________________________________________________________________________
1.132

Dane:

Szukane:

Wzory:

1

2

3

1

2

15

30

20

20

20

30

V

V

U

V

R

k

R

k

R

k

R

k

R

k

=

=

=

=

=

=

1

2

1

2

OV

OV

ZV

ZV

U

U

U

U

=

=

=

=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +


a)

1

2

1

1

2

2

15

15

0, 3

30

20

50

0, 3

30

9

0, 3

20

6

O

V

V

OV

O

V

OV

O

V

U

V

V

I

mA

R

R

k

k

k

U

I

R

mA

k

V

U

I

R

mA

k

V

=

=

=

=

+

Ω +

= ⋅

=

Ω =

= ⋅

=

Ω =

b)

1

1

1

1

1

2

2

2

2

2

1

2

1

1

2

2

20 30

600

12

20 30

50

30 20

600

12

30 20

50

15

15

0, 625

12

12

24

0, 625

12

7, 5

0, 625

12

7, 5

V

V

V

V

Z

ZV

Z

ZV

Z

R R

R

k

R

R

R R

R

k

R

R

U

V

V

I

mA

R

R

k

k

k

U

I

R

mA

k

V

U

I

R

mA

k

V

=

=

=

=

+

+

=

=

=

=

+

+

=

=

=

=

+

Ω +

= ⋅ =

Ω =

= ⋅

=

Ω =


___________________________________________________________________________
1.133

Dane:

Szukane:

Wzory:

1

2

OV

OV

W

U

U

I

=

=

=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

background image

1

2

3

1

2

30

30

20

20

20

30

V

V

U

V

R

k

R

k

R

k

R

k

R

k

=

=

=

=

=

=

1

2

R

R

R

= +


a)

1

2

2

2

1

2

2

2

2

2

30

30

0, 6

30

20

50

0, 6

20

12

30

30

0, 6

20

30

50

0, 6

30

18

18 12

6

O

V

V

OV

O

V

R

OR

R

W

OR

OV

U

V

V

I

mA

R

R

k

k

k

U

I

R

mA

k

V

U

V

V

I

mA

R

R

k

k

k

U

I

R

mA

k

V

U

U

U

V

=

=

=

=

+

Ω +

= ⋅

=

Ω =

=

=

=

=

+

Ω +

= ⋅

=

Ω =

=

= − =

b)

1

1

1

1

1

2

2

2

2

2

1

2

1

1

2

2

1

1

1

2

2

2

20 30

600

12

20 30

50

30 20

600

12

30 20

50

30

30

1, 25

12

12

24

1, 25

12

15

1, 25

12

15

15

0, 5

30

15

2

V

V

V

V

Z

Z

Z

Z

Z

Z

V

V

Z

V

V

R R

R

k

R

R

R R

R

k

R

R

U

V

V

I

mA

R

R

k

k

k

U

I

R

mA

k

V

U

I

R

mA

k

V

U

V

I

mA

R

k

U

V

I

R

=

=

=

=

+

+

=

=

=

=

+

+

=

=

=

=

+

Ω +

= ⋅ =

Ω =

= ⋅

=

Ω =

=

=

=

=

=

1

2

2

1

0, 75

0

0, 75

0, 5

0, 25

V

W

V

W

V

V

mA

k

I

I

I

I

I

I

mA

mA

mA

=

+

=

=

+

=

=


___________________________________________________________________________
1.134

Dane:

Szukane:

Wzory:

16

25

21

AB

BC

CA

R

R

R

=

=

=

1

2

3

R

R

R

=

=

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

background image

Zadanie niby proste , ale w rzeczywistości wielu padło próbując to rozwiązać!
spirala_grzejna/rezystor pomiędzy zaciskami

1

AB

R

=

,

2

BC

R

=

,

3

AC

R

=

standardowo to wchodzi się w wielomiany wysokiego stopnia i tam się grzęźnie.
Dlatego trzeba inaczej, zauważ powtarzające się

1

2

3

R

R

R

+

+

i tu trzeba szukać ratunku.

Tak jak na powyższym wyliczeniu, takie grupowe podstawienie (można powiedzieć troszkę
na intuicję, ale jest to metoda zwykłego podstawiania) dało efekt znacznego uproszczenia i
układ stał się wyliczalny.
Rozwiązanie 2 metodą nie dało korzystniejszych rezultatów.

2

3

1

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

3

2

1

2

3

2

1

3

2

1

3

2

1

3

2

1

3

1

2

3

2

1

3

1

2

3

3

1

2

1

1

1

(

)

(

)

(

)

(

)

16

1

1

1

(

)

(

)

(

)

(

)

25

1

1

1

AB

AB

BC

BC

CA

R

R

R

R

R

R

R

R

R

R

R R

R

R R

R

R R

R

R

R

R

R

R R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R R

R

R R

R

R R

R

R

R

R

R

R R

R

R

R

R

R

R

R

R

+

+

+

+

=

+

=

=

+

+

+

+

=

+

+

+

=

+

+

+

+

+

+

=

+

=

=

+

+

+

+

=

+

+

+

=

+

+

=

+

=

+

1

2

3

3

1

2

3

1

2

1

2

3

3

1

2

1

2

3

(

)

(

)

(

)

21

CA

R

R

R

R R

R

R R

R

R

R

R

R

R R

R

R

R

R

+

+

+

+

=

+

+

+

=

+

+

1

2

3

1

2

3

2

1

3

1

2

3

3

1

2

1

2

3

(

)

16

(

)

25

(

)

21

R R

R

R

R

R

R R

R

R

R

R

R R

R

R

R

R

+

=

+

+

+

=

+

+

+

=

+

+

1

2

3

1

2

3

(

)

16

R R

R

R

R

R

+

+

+

=

2

1

3

1

2

3

3

1

2

1

2

3

(

)

25

(

)

16

(

)

21

(

)

16

R R

R

R R

R

R R

R

R R

R

+

=

+

+

=

+



background image

1

2

3

2

1

3

1

2

3

3

1

2

1

2

1

3

1

2

2

3

1

2

1

3

1

3

2

3

1

2

1

3

2

3

1

2

1

3

2

3

1

2

1

3

1

2

1

3

1

3

1

2

3

2

25

(

) 16

(

)

21

(

) 16

(

)

25

25

16

16

21

21

16

16

9

25

16

21

5

16

9

25

21

5

20

12

12

3

20

R R

R

R R

R

R R

R

R R

R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R

R

+

= ⋅

+

+

= ⋅

+

+

=

+

+

=

+

+

=

+

=

+

=

+

=

=

=

2

1

2

1

2

2

2

1

2

1

2

2

2

1

2

2

2

1

2

1

2

2

5

3

3

21

5

16

5

5

3

21

3

16

5

3

24

16

5

48

24

5

48

2

120

5

R

R R

R

R

R

R

R R

R R

R

R

R R

R

R

R

R

R

R

R

+

=

+

=

=

=

=

=

1

3

1

2

3

1

2

3

:

(

)

16

teraz

R

i

R

podstawiamy

do

R R

R

R

R

R

+

+

+

=

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

(

)

2

3

5

5

5

5

16

2

3

(

)

5

5

2

16

16

32

25

16

32

25

50

R R

R

R

R

R

R R

R

R

R

R R

R

R

+

+

+

=

+

=

=

=

=

3

2

1

2

3

3

50

30

5

5

2

2

50

20

5

5

R

R

R

R

=

= ⋅

=

=

= ⋅

=

background image

2) Sposób. Początek podobnie a potem troszkę inaczej , tak jakby bardziej w kierunku
matematycznych przekształceń ,metodą przeciwnych współczynników.

2

3

1

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

3

2

1

2

3

2

1

3

2

1

3

2

1

3

2

1

3

1

2

3

2

1

3

1

1

1

1

(

)

(

)

(

)

(

)

16

(

)

16

1

1

1

(

)

(

)

(

)

(

)

25

AB

AB

BC

BC

R

R

R

R

R

R

R

R

R

R

R R

R

R R

R

R R

R

R

R

R

R

R R

R

R

R

R

R R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R R

R

R R

R

R R

R

R

R

R

R

R R

R

R

R

+

+

+

+

=

+

=

=

+

+

+

+

=

+

+

+

=

+

+

+

+

+

=

+

+

+

+

=

+

=

=

+

+

+

+

=

+

+

+

=

+

2

3

2

1

3

1

2

3

1

2

3

3

1

2

3

1

2

3

1

2

1

2

3

3

1

2

1

2

3

3

1

2

1

2

3

(

)

25

1

1

1

(

)

(

)

(

)

21

(

)

21

CA

CA

R

R R

R

R

R

R

R

R

R

R

R

R

R

R R

R

R R

R

R

R

R

R

R R

R

R

R

R

R R

R

R

R

R

+

+

+

+

=

+

+

=

+

=

+

+

+

=

+

+

+

=

+

+

+

+

+

=

wyznaczam

1

2

3

R

R

R

+

+

i porównuję stronami

background image

1

2

3

1

2

3

2

1

3

1

2

3

3

1

2

1

2

3

1

2

3

2

1

3

1

2

3

3

1

2

2

1

3

3

1

2

1

2

3

2

1

3

1

2

3

3

1

2

2

1

(

)

16

(

)

25

(

)

21

(

)

(

)

16

25

(

)

(

)

16

21

(

)

(

)

25

21

25

(

) 16

(

)

21 (

) 16

(

)

21

(

R R

R

R

R

R

R R

R

R

R

R

R R

R

R

R

R

R R

R

R R

R

R R

R

R R

R

R R

R

R R

R

R R

R

R R

R

R R

R

R R

R

R R

+

+

+

=

+

+

+

=

+

+

+

=

+

+

=

+

+

=

+

+

=

+

=

+

+

=

+

3

3

1

2

1

2

1

3

1

2

2

3

1

2

1

3

1

3

2

3

1

2

2

3

1

3

2

3

)

25

(

)

25

25

16

16

21

21

16

16

21

21

25

25

R

R R

R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

+

=

+

+

=

+

+

=

+

+

=

+

1

2

1

3

2

3

1

2

1

3

2

3

1

2

1

3

2

3

9

25

16

21

5

16

21

25

4

R R

R R

R R

R R

R R

R R

R R

R R

R R

+

=

+

=

=

+

1

2

1

3

2

3

1

2

1

3

2

3

1

2

1

3

2

3

1

3

2

3

1

3

2

3

3

1

2

3

1

2

2

2

1

1

2

1

3

1

2

3

9

25

16

21

5

16

21

25

4

2

3

30

12

30

12

0

(30

12

)

0

0

30

12

0

12

2

30

5

1

2

12

20

0

( 12

20

)

0

R R

R R

R R

R R

R R

R R

R R

R R

R R

od

odjąć

R R

R R

R R

R R

R

R

R

poniewaz

R

R

R

R

R

R

od

odjąć

R R

R R

R

R

R

poniewaz

+

=

+

=

=

=

=

=

=

=

=

+

=

+

=

1

2

3

2

2

3

0

12

20

0

12

3

20

5

R

R

R

R

R

R

+

=

=

=


po wielu męczarniach układ , skrócił się do takiego prostego:

background image

2

1

2

3

2

5

3

5

R

R

R

R

=



=



2

R wyznacza się z wzoru pierwotnego.

1

3

1

2

3

1

2

3

2

2

2

2

2

2

2

2

2

2

2

2

(

)

16

2

3

(

)

2

3

5

5

5

5

16

3

2

(

)

32

80

48

5

80

80

80

80

wyznaczone R i R podstawiam do jednego z pierwszych wzorów

R R

R

R

R

R

R

R

R

R

R

R

R

R R

R

R

R

+

+

+

=

+

+

+

=

+

+

+

=

2

2

2

2

2

2

2

2

2

1

2

3

3

160

2

(

)

5

5

3

80

(

)

5

5

400

8

50

2

2 50

20

5

5

3

3 50

30

5

5

R

R

R R

R

R

R

R

R

R

R

R

=

+

=

+

=

=

=

=

=

=

=

=


3)Sposób , troszkę dziwaczny, początek jak zwykle podobny

background image

2

3

1

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

3

2

1

2

3

2

1

3

2

1

3

2

1

3

2

1

3

1

2

3

2

1

3

1

1

1

1

(

)

(

)

(

)

(

)

16

16(

)

(

)

1

1

1

(

)

(

)

(

)

(

)

25

AB

AB

BC

BC

R

R

R

R

R

R

R

R

R

R

R R

R

R R

R

R R

R

R

R

R

R

R R

R

R

R

R

R

R

R

R R

R

R

R

R

R

R

R

R

R

R

R

R R

R

R R

R

R R

R

R

R

R

R

R R

R

R

+

+

+

+

=

+

=

=

+

+

+

+

=

+

+

+

=

+

+

+

+

=

+

+

+

+

+

=

+

=

=

+

+

+

+

=

+

+

+

=

2

3

1

2

3

2

1

3

1

2

3

3

1

2

3

1

2

3

1

2

1

2

3

3

1

2

1

2

3

1

2

3

3

1

2

25(

)

(

)

1

1

1

(

)

(

)

(

)

21

21(

)

(

)

CA

CA

R

R

R

R

R

R R

R

R

R

R

R

R

R

R

R R

R

R R

R

R

R

R

R

R R

R

R

R

R

R

R

R

R R

R

+

+

+

+

=

+

+

+

=

+

=

+

+

+

=

+

+

+

=

+

+

+

+

=

+

1

2

3

1

2

3

1

2

3

2

1

3

1

2

3

3

1

2

16(

)

(

)

25(

)

(

)

21(

)

(

)

R

R

R

R R

R

R

R

R

R R

R

R

R

R

R R

R

+

+

=

+

+

+

=

+

+

+

=

+

1

2

3

R

R

R

S

+

+

=

to taka niewiadoma pomocnicza

1

2

3

2

1

3

3

1

2

16

(

)

25

(

)

21

(

)

S

R R

R

S

R R

R

S

R R

R

=

+

=

+

=

+

1

2

1

3

1

2

2

3

1

3

2

3

16

25

21

S

R R

R R

S

R R

R R

S

R R

R R

=

+

=

+

=

+

teraz przerabiamy stronami, przez sumowanie dwóch i odjęcie trzeciego.
ale dlaczego tak ? może to jakaś wariacja wg metody przeciwnych współczynników .

1

2

1

3

1

2

2

3

1

3

2

3

1

2

1

3

1

2

2

3

1

3

2

3

1

2

1

3

1

2

2

3

1

3

2

3

(1) (2) (3)

(1) (2) (3)

(1) (2) (3)

16

25

21

16

25

21

16

25

21

S

S

S

R R

R R

R R

R R

R R

R R

S

S

S

R R

R R

R R

R R

R R

R R

S

S

S

R R

R R

R R

R R

R R

R R

+

+

− +

+

+

=

+

+

+

+

=

+

+

+

+

+

= −

+

+

+

+

background image

1

2

1

3

2

3

20

2

12

2

30

2

S

R R

S

R R

S

R R

=

=

=


teraz dzielimy strony równań parami: 1 przez 2, 1 przez 3, 2 przez 3

1

2

1

3

1

2

2

3

1

3

2

3

3

2

3

1

2

1

1

3

1

2

2

20

12

2

2

20

30

2

2

12

30

2

5

3

2

3

2

5

3

2

5

2

R R

S

S

R R

R R

S

S

R R

R R

S

S

R R

R

R

R

R

R

R

R

R

R

R

=

=

=

=

=

=

=

=

podstawiamy do równania pierwotnego

1

2

3

1

2

3

1

1

1

1

1

1

1

1

1

1

1

3

1

2

16(

)

(

)

5

3

5

3

16(

)

(

)

2

2

2

2

10

8

16

2

2

20

3

3 20

30

2

2

5

5 20

50

2

2

R

R

R

R R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

+

+

=

+

+

+

=

+

=

=

=

=

=

=

=

=


___________________________________________________________________________
1.135

Dane:

Szukane:

Wzory:

2

3

4

175

100

20

0

G

R

R

R

I

=

=

=

=

1

R

=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +


wg wzoru na równowagę mostka

background image

3

2

1

4

3

2

1

4

100 175

17500

875

20

20

R R

R R

R R

R

R

= ⋅

=

=

=

=


lub troszkę naokoło

1

1

1

2

2

2

3

3

3

4

4

4

1

2

3

4

1

3

1

1

3

3

3

3

1

1

2

4

2

2

4

4

1

2

3

4

3

3

2

3

4

1

3

2

1

4

3

2

1

4

175 100

875

20

U

I R

U

I

R

U

I

R

U

I

R

I

I

I

I

U

U

I R

I

R

I

R

I

R

U

U

I

R

I

R

I R

I

R

I

R

R

I

R

R

R R

R R

R R

R

R

= ⋅

= ⋅

= ⋅

= ⋅

=

=

=

⋅ = ⋅

=

=

= ⋅

= ⋅

⋅ ⋅ = ⋅

= ⋅

=

=

=


___________________________________________________________________________
1.136

Dane:

Szukane:

Wzory:

1

2

3

4

875

175

100

20

0

6

G

R

R

R

R

I

E

V

=

=

=

=

=

=

1

2

I

I

=

=

U

I

R

=

1

2

1

1

1

R

R

R

=

+

1

2

R

R

R

= +

1

1

2

2

2

4

6

5, 71

875 175

6

50

100 20

E

I

mA

R

R

E

I

mA

R

R

=

=

=

+

+

=

=

=

+

+

background image

___________________________________________________________________________
1.137

Dane:

Szukane:

Wzory:

1

2

1

2

1 2

100

100

20

50

52

1

0, 004

x

l

o

Cu

o

R

R

rezystor miedziany

R

rezystor drutowy

l

l

l

mm

C

l

l

mm

l

mm

C

ϑ

ϑ

ϑ

ϑ

α

=

=

=

= + =

=

=

=

=

=

2

ϑ

=

1

2

R

R

R

= +

1

2

(1

(

))

R

R

α ϑ ϑ

= ⋅ +

1

1

1

2

l

l

l

l

l

R

R

l

R

R

ϑ

= ⋅

=

2

1

1

1

1

2

2

2

100

100

100 50

100

50

x

l

l

l

l

x

l

l

R

R

R R

l

R

R R

l

l

R

l

R

l

R

l

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

= ⋅

⋅ ⋅

=

=

=

=

=

w temperaturze pracy:

1 2

2 2

2 2

1 2

2 2

2 2

1 2

1 2

2

2 2

1 2

1 2

1 2

1 2

2

2 2

2 2

2 2

100 52

48

100

100

100 52

108, 33

48

l

l

l

l

x

l

l

l

l

x

l

l

l

l

l

l

l

l

mm

l

R

R

l

l

R

R

l

R

R

R R

l

R

R R

l

l

R

l

R

l

R

l

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

=

+

= −

=

=

= ⋅

= ⋅

= ⋅

⋅ ⋅

=

=

=

=

=

background image

2

2

2

2

2

2

2

2

(1

(

))

1

(

)

1

(

)

108, 33

1

1

100

20

20,83 20

40,83

0, 004

x

x

x

x

x

x

x

o

x

R

R

R

R

R

R

R

R

C

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

α ϑ ϑ

α ϑ ϑ

ϑ ϑ

α

ϑ

ϑ

α

=

⋅ +

= +

=

=

+ =

+

=

+

=


___________________________________________________________________________


Wyszukiwarka

Podobne podstrony:
7b Zbiór zadań z elektrotechniki Aleksy Markiewicz rozwiązania od 7 51 do 7 88
7c Zbiór zadań z elektrotechniki Aleksy Markiewicz rozwiązania od 7 89 do 7 121
2 Zbiór zadań z elektrotechniki Aleksy Markiewicz rozwiązania od 2 1do2 16
3 Zbiór zadań z elektrotechniki Aleksy Markiewicz rozwiązania od 3 1do3 71
1a Zbiór zadań z elektrotechniki Aleksy Markiewicz rozwiązania od 1 1 do 1 64
5 Zbiór zadań z elektrotechniki Aleksy Markiewicz rozwiązania od 5 1do5 44
7a Zbiór zadań z elektrotechniki Aleksy Markiewicz rozwiązania od 7 1 do 7 50
8. Indukcja elektromagnetyczna. Prad przemienny, budownictwo PG, fizyka, zadania, zbior zadan
02 zbiór zadan rozwiązania

więcej podobnych podstron