background image

 
 

Design Review 

For 

 

DC-DC Converter for EWB Wind Turbine Project 

 
 

ECE445 – Senior Design 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

Developers 

 

Chris Livesay 

Jeong-Ah Lee 

Qing Janet Wang 

 
 

Date 

 

February 22, 2006

 

 
 

background image

DC-DC Converter for EWB Wind Turbine Project 

 
I. Introduction
 
 
This project is part of an ongoing project for Engineers Without Borders (EWB) and will be a 
great opportunity to help the lives of underprivileged people while giving us practical hands-on 
experience in the field of power engineering. 
 
Objectives: 
 
For this project, we will be designing a dc-dc converter that connects a wind turbine output 
ranging from 40 to 70 volts to a charge controller used to charge 12 volt lead-acid batteries. The 
dc-dc converter will be used to improve a village’s access to electricity from wind sources in 
India. 

 

Benefits: 
-  Provides a reliable and low cost way to improve access to electricity 
-  Achieves high efficiency (approximately 85%) 
-  Does not create radio frequency interference 
-  Does not drain battery when wind turbine is not producing power 

 

Features: 
-  Output is user-adjustable between 12V - 8 A and 15V - 10 A, regulated 
-  Able to take full output of wind generator when load is switched on 
-  Input over-voltage protection 
-  Input and output overload protection 
-  Input and output short circuit protection 
-  Input and output reverse polarity protection 

 

1

background image

II. Design 
 
Block Diagram: 

 

 
Block Descriptions:
 
 
DC-DC Buck Converter 

1. 

The dc-dc converter will be capable of converting an input of 35 to 85 Volts dc to 
an output of 12 to 15 Volts dc.  

2. 

The input protection and the MOSFET driver will be connected as inputs while 
the output protection will be connected at the output. 

 
Input Protection 

1. 

The input protection will protect against an input short-circuit, input reverse 
polarity and input overload.  

2. 

The input voltage (wind turbine output) may exceed 125 V if a wire breaks and 
the load is disconnected, so our circuit will provide protection up to 170 V.  

3. 

The wind turbine output will be connected here and the output of the input 
protection will be connected to the dc-dc converter input. 

4. 

The main purpose is to keep the dc-dc converter from being damaged.  

 
MOSFET Driver 

1. 

This component will be used to drive the converter MOSFETs.   

2. 

It will also protect against input over-voltage.  

3. 

It will be connected to the MOSFETs in the dc-dc converter. 

 
Output Protection 

1. 

The output protection will protect against an output short-circuit, output reverse 
polarity and output overload.  

2. 

The dc-dc converter output will be connected to this part and the load will be 
connected to the output.  

3. 

The purpose of this part is to protect the dc-dc converter and also the load. 

 

2

background image

Performance Requirement: 
  
 
With an input of around 35 V to 85 V, the output of the dc-dc converter should be regulated at 12 
V and 8 A or 15 V and 10 A.  The voltage ripple should be less than ±0.5% of the output.  The 
desired efficiency is around 85 %.  The converter should be user-settable for an output of 12 to 
15 Volts. 
 
For reference, the wind generator details are given below: 

1. 

Its dc output, ranging from 40 V – 70 V, feeds into the dc-dc converter. 

2. 

Mozda HAWT is a 48 volt, 1200 VA, star connected three phase ac generator [12 
pole rotor (the rotor is a set of two mild steel disks of 8" diameter each with 12 
neodymium iron boron magnets of 2" x 1" x 1/2" size, Grade 35), 9 coil stator 
(each coil made from 1.1 mm diameter enameled copper wire with 140 turns 
wound so that the hollow of the coil has the size of the magnet)].  

3. 

The design of the generator is for 170 rpm cut-in and 600 or 700 rpm max output. 

4. 

Normally, the maximum voltage is around 65 V, but in case some wire breaks etc. 
and the generator disconnects, then the voltage may exceed 125 V.   

 
 
Schematics: 
 
See next 4 pages for schematics and calculations. 
 
 

 
 
 
 
 
 
 
 

 

3

background image

 
 

 

 
 
 

 

4

background image

Dc-dc Converter Schematic: 

M

O

SFE

T

IRF

640

V

ra

te

d

 =

 200V

I

ra

te

d

 =

 18A

Fuse

h

o

ld

er

HTB-

24I

Fuse

 S

iz

1

4

" x 

1

1

4

"

V

ra

te

d

 = 25

0

V

I

ra

te

d

 = 

1

5

A

V

IN

Di

o

d

e x 

2

MBR10100

V

ra

te

d

 =

 100V

I

ra

te

d

 =

 10A

Di

ode

MR756 OR MR752

V

ra

te

d

(R

M

S

)

 =

 420V

I

ra

te

d

 =

 22A

In

du

ct

or

T

106-26

 Core

L

10

m

H

N=

11

B=

.2T

E

lect

rolytic

C

ap

acitor

 x 

5

C

50

m

F

V

ra

te

d

 =

 150V

Fu

se

A

BC-15

V

ra

te

d

 = 

2

5

0V

I

ra

te

d

 =

 15A

V

OU

T

Fu

se

A

BC-6

V

ra

te

d

 = 

2

5

0V

I

ra

te

d

 = 6A

Fuse

h

o

ld

er

HT

B-24I

Fuse

 S

iz

1

4

" x 

1

1

4

"

V

ra

te

d

 = 250V

I

ra

te

d

 = 

1

5

A

GN

D

IN

Connec

t

to C

as

e

Con

n

ect

to C

as

e

GND

OU

T

Di

o

d

e

MR75

6

 OR MR752

V

ra

te

d(R

M

S

)

 =

 420V

I

ra

te

d

 =

 22A

PWM

 

 

5

background image

PWM Control Schematic 

TL5

98

1-

1I

N+

2-

1

IN

-

3-

F

E

ED

BA

CK

4-

DT

C

8-OU

T

1

7-

SI

GNAL GND

6-

RT

5-C

T

Vcc-

1

2

Vc-11

PO

WE

R

 GND-10

OUT

2-9

OUTP

U

T CTR

L

-13

RE

F

-14

2I

N--

1

5

2I

N+-

1

6

NC

-8

OU

T

A

-7

Vs-6

OUT

B

-5

4-

IN

B

3-GND

2-

INA

1-N

C

MIC44

2

7

TL

43

1

1-

CAT

H

2-

NC

3-

NC

4-

NC

NC-5

ANODE-6

NC-7

REF-

8

PWM

1k

 

W

50

 

W

V

IN

20

W+

2k

 

W

15

0k

 

W

V

OUT

20k

 

W

POT

50k

 

W

.0

1

m

F

47

W

+

30 

W

1k 

W

39

W

15

0k

 

W

V

IN

5V

Thi

s POT c

o

nt

ro

ls

 the 

o

u

tpu

t vo

lt

age ra

nge,

 

12

V-

15

V

33

W

V

IN

2

20k

 

W

5k

 

W

Whe

n

 the vo

ltag

d

ivi

der re

aches

 

1.8

6

V (

V

IN

 =

 8

5

V

th

e TL431 

will 

c

o

nduct a

nd 

the

 TL598 w

il

turn off.

These deter

m

ine

 the 

fr

eq

uenc

y, f=1

/(

2

*

R

*

C

)

10

W

PN

P

 B

JT

2N29

0

5

V

ra

te

d

 = 4

0

V

I

ra

te

d

 =

 150

mA

 

 

6

background image

Calculations: 
 

 

Design Specifications 

35

85

12

15

1.5

8

1

96

150

100

IN

OUT

OUT

OUT

OUT

SW

V

V

V

V

V

V

R

A

I

A

W

P

W

0

f

kHz

<

<

<

<

=

<

<

<

<

=

 

 
 

Duty Ratio Limits 

12

15

85

35

.141

.429

OUT

IN

V

D

V

D

D

=

< <

< <

 

 
 

Input Current Limits 

*

.141*8

.429 *10

1.128

4.290

IN

OUT

IN

IN

I

D I

I

A

I

A

=

<

<

<

<

 

 
 

Capacitor Design 

*

*

.429

.01*1.5*100000

286

OUT

SW

D

C

I

V

f

C

C

F

µ

=

=

>

 

 
 

 

Inductor Design 

(

)

(

)

(

)

6

*

1

2

1

2 *

1.5

1 .141

2 *100000

6.443

10

*

*

10 *10 *.0649

75*

*.000066

11

OUT

CRIT

OUT

CRIT

CRIT

CRIT

o

R

T

L

D

R

L

D

f

L

L

F

L

F

L l

N

A

N

N

µ

µ

µ

µ

=

=

=

=
=

=

=

=

 

 

max

max

max

*

*

75*

*11*10

.0649

.160

OUT

o

N I

B

l

B

B

T

µ

µ

=

=

=

 

 

7

background image

Simulation Results and Schematic: 
 
The following graphs illustrate the preliminary simulation results for the buck converter.  The 
schematic of the buck converter is attached in the following page.  We used a switch to simulate 
the MOSFET.  We set the period to 10 µs.  We tested the converter at the input of 35 V, the 
minimum voltage at which the PWM and the MOSFET driver turn on, and at 85 V, the 
maximum voltage the shunt regulator can handle before shutting down.  For an input of 35 V, we 
achieved the desired output of 15 V by setting the duty ratio to 0.612.  For an input of 85 V, the 
desired output was achieved with the duty ratio of 0.205.  

 

           

Time

0s

0.5ms

1.0ms

1.5ms

2.0ms

2.5ms

3.0ms

3.5ms

4.0ms

4.5ms

5.0ms

V(R1:2)

0V

4V

8V

12V

16V

Vout = 15 V

Vin = 35 V

 

Vin = 35 V; Vout = 15 V; D=0.612 

 
 

           

Time

0s

0.5ms

1.0ms

1.5ms

2.0ms

2.5ms

3.0ms

3.5ms

4.0ms

4.5ms

5.0ms

V(R1:2)

0V

5V

10V

15V

20V

Vout = 15 V

Vin = 85 V

 

Vin = 85 V; Vout = 15 V; D=0.205 

 

7

background image

 

THE PSPICE SIMULATION SCHEMATIC WILL GO HERE. 

 

8

background image

III. Verification 
 
Testing Procedures:
 
 
Besides testing how well all the components work together, we want to make sure that all parts 
of our circuit are independently operating to our satisfaction.  The testing of each component is 
described in their respective locations below. 
 
Dc-dc Converter 
 
Our dc-dc converter will be tested in the lab.  The output voltage will be plotted with respect to 
the input voltage ranging from 0 V to 170 V. To obtain the needed dc input voltage several 
power supplies will be connected in series.  From this data the line regulation can be calculated. 
Efficiency will be calculated and plotted by taking the output power divided by the input power 
over the input voltage range of 35 V to 85 V.  If the efficiency does not reach the minimum value 
of 85%, we may have to modify our design. 
 
Over-voltage Protection 
 
Over-voltage protection will be tested by simply increasing the voltage above 85 V until about 
150 V (the maximum voltage the wind turbine output can reach) and checking to make sure the 
circuit turns off. Reverse polarity will be tested by reversing the polarity of the input and making 
sure the fuse blows without harming any of the other components. Overload protection will be 
tested by overloading the circuit to above 15 A (the rated current of the fuse holder) and again, 
making sure the fuse blows. Overload will be achieved by placing a small high power resistor at 
the output.  
 
MOSFET Driver 
 
We will take a look at the PWM signal coming out of the MIC4427.  We will identify the square 
wave pulse occurring accordingly to the required duty ratio which ranges from 0.141 to 0.429.  
We will also note the amplitude of the signal. 
 
 
Tolerance Analysis: 
 
The one component that will affect the output of the dc-dc converter the most is the output 
voltage capacitor filter. The size of the capacitor will determine the amount of voltage ripple that 
will be present at the output. Since the project proposal from EWB does not provide a specific 
ripple allowance, we will set the ripple allowance specification to ±0.5% of the output voltage.  
To achieve this, we will be testing the filter circuit under various sized capacitors to find the 
smallest capacitor value we can have and still maintain a ripple voltage under the allowed 
amount. 

 

9

background image

IV. 

Cost and Schedule  

 
Cost Analysis: 
 

•  Parts 

Parts Received 

 

Part # 

Mft 

Desc Price 

Qty  Total 

MIC4427YN 

Micrel Inc 

MOSFET Driver 1.5A 

$1.95 

$1.95 

TL431CP 

Texas 
Instruments 

Shunt Regulator 

$0.40 1  $0.40 

TL598CN 

Texas 
Instruments 

PWM Controller 

$1.35 1  $1.35 

Total  

 

 

 

$3.70 

Parts Needed 

Part # 

Mft 

Desc Price 

Qty 

Total 

HTB-24I 

Ferraz 
Shawmut 

Fuseholder ¼” x 1 ¼” 
250V 15A 

$2.80 2  $5.60 

IRF640 

International 
Rectifier 

MOSFET  
200V 18A 

$1.99 1  $1.99 

MR756 or 
MR752 

ON 
Semiconductor

Diode 50-1000 V 

$0.70 2  $1.40 

2N2905 SECOA 

PNP 

BJT 

$0.45 

$0.45 

T106-26 

Micrometals 

Powdered Metal Core 

$1.50 

$1.50 

N/A 

Parts Shop 

PCB Board 

$30.00  1 

$30.00

N/A 

Parts Shop 

Containment Box 

$3.50 

$3.50 

N/A ERJ 

Various 

RES 

$0.04 

15 

$0.60 

N/A Lab 

Various 

CAP 

$1.50 

$7.50 

N/A Lab 

12 

Gauge 

Wire 

$3.00 

$3.00 

Total  

 

 

 

$59.24

•  Labor 

$40/hour x 2.5 x 70 hours x 3 people = $21,000

 

•  Grand Total 

Parts + Labor = ($3.70 +$59.24) + $21,000 = $21,062.94 

 

 

10

background image

Schedule: 

Week Of 

Description 

01/30/06 Brainstorm 

Design 

Alternative – Everyone 

Proposal – Janet 

02/06/06 

Finish Proposal – Jeong 
Finalize Design -- Chris 
Draw Circuit Schematics – Chris 
Order Parts -- Janet 
* Proposal due 2/8 @ 4PM 

02/13/06 

Create Simulations of Converter – Jeong 
Create Simulations of MOSFET – Jeong 
Write Design Report – Chris 
Receive Parts -- Janet 
* Design Review sign-up opens 2/13 

02/20/06 

Build Converter -- Chris 
Build Output Filter -- Jeong 
Build Control Circuit -- Janet 
* Design Review 2/22-2/24 

02/27/06 

Modular Testing – Chris 

03/06/06 

Debug – Jeong 
Integrate Prototype – Janet 

03/13/06 

Final Optimization/Testing -- Chris 
Order PCB Board -- Jeong 
Prepare Mock-Up – Janet 

03/20/06 Spring 

Break 

03/27/06 

Mock Demo – Everyone 

04/03/06 

Prepare Presentation – Jeong 
Receive PCB Board -- Jeong 
Final Optimization – Chris 

04/10/06 

Final Paper – Janet 
* Demos & Presentation sign-up opens 4/14 

04/17/06 

Final Presentation – Everyone 

04/24/06 

Demo & Presentation – Everyone 

05/01/06 

Relax – Everyone 
* Final Papers & Lab Notebooks due 5/2 @ 4 PM 
* Check Out & Awards 5/4 @ 4-6PM
 

 

 

 

11