CIGI LICZBOWE
Zad.1. Zbadać monotoniczność i ograniczoność ciągów
2
n!
( )
( )
( )
( )
a an =
=
) =
) =
)
)
2n !
( )
( )
( )
( )
n! 2n !
( )
( )
( )
( )
b an =
=
) =
) =
)
)
3n !
( )
( )
( )
( )
n
c an =
=
) =
) =
)
)
10n
n!
d an =
=
) =
) =
)
)
nn
4 - 3n
-
-
-
e an =
=
) =
) =
)
)
n +11
+
+
+
4n2 - 3n
-
-
-
f an =
=
) =
) =
)
)
n2 +1
+
+
+
4 - 3n2
-
-
-
g an =
=
) =
) =
)
)
9
3n3
h an =
=
) =
) =
)
)
n3 +11
+
+
+
4 - 3n2
-
-
-
i an =
=
) =
) =
)
)
n +1
+
+
+
j an = log2 n2 + 3
= +
) = +
) = +
) ( )
) ( )
( )
( )
1
k an =
=
) =
) =
)
)
2n + 7
+
+
+
4
l an =
=
) =
) =
)
)
5n + 7
+
+
+
n
m an = log3
=
) =
) =
)
)
n + 7
+
+
+
1
n an = sin
=
) =
) =
)
)
n + 4
+
+
+
n3 - 2n2 + n -17
o an =
)
n2 - 5n3
p an = 15n -10n2 + 8
)
r an = n2 -18n +119
)
2 + 5 + 8 + ...+ 2 + 3n
( )
s an =
)
3 + 7 +11+15 + ...+ 3 + 4n
( )
n
t an =
) (-2
)
n
u an = 3n +
) (-1
)
Wyszukiwarka
Podobne podstrony:
ciagi i szeregi zadZałącznik nr 18 zad z pisow wyraz ó i u poziom Izadzad 12009 rozw zadCiagiCiągi liczbowezad nst 1więcej podobnych podstron