Recent advences in Asymmetric Transfer Hydrogenation

background image

Recent Advances in Asymmetric

Transfer Hydrogenation

Adam M. Azman

8 March 2007

background image

1

Chiral Secondary Alcohols and Amines

Chiral secondary alcohols and amines prevalent

Important as intermediates

Me

Me

Me

O

Me

3

Si

Me

Me

Me

HO

Me

3

Si

Me

Me

Me

H

H

HO

H

or

Me

Me

Me

H

H

H

2

C

(−)-β-cubebene

(−)-cubebol

MeO

MeO

N

H

N

Me

H

H

HN

OH

tubulosine

O

N

H

Me

CF

3

HCl

fluoxetine hydrochloride

(Prozac)

HO

OH

OMe

Me

H

N

NHCHO

(R,R)-formoterol

Fürstner, A.; Hannen, P. Chem. Eur. J., 2006, 12, 3006-3019.

Hett, R.; Fang, Q. K.; Gao, Y.; Hong, Y.; Butler, H. T.; Nie, X.; Wald, S. Tetrahedron Lett., 1997, 38, 1125-1128.

background image

2

Formation of Chiral Secondary Alcohols

Addition to aldehyde

Organometallic Nucleophile

Aldol

N

O

Epoxide opening

Asymmetric carbonyl/imine reduction

Chérest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett., 1968, 18, 2199-2204.

Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K.

J. Org. Chem.

, 2001, 66, 895-902.

R

S

O

Me

L

3

Ti

H

O

R

1

N

O

R

S

O

OH

R

1

"Evans Syn" Product

O

MeLi

Me

OH

Alexakis, A.; Vrancken, E.; Mangeney, P.; Chemla, F.

J. Chem. Soc. Perkin Trans. I

, 2000, 3352.3353.

Ph

Me

O

Ph

(S)

Me

OH

[RuCl

2

(p-cymene)]

2

(1S,2S)-N -(p-toluenesulfonyl)-1,2-

diphenylethylenediamine

i

PrOH, KOH

Hashiguchi, S.; Fujii, A.; Takehara, K.; Ikariya, T.; Noyori, R.

J. Am. Chem. Soc.

, 1995, 117, 7562-7563.

Asymmetric alkene oxidation

Hydroboration

Dihydroxylation

OsO

4

NMO

O

O

O

Me

Me

OH

O

O

O

Me

Me

OH

OH

OH

O

O

O

O

Me
Me

Me
Me

H

H

Brimacombe, J. S.; Hanna, R.; Kabir, A. K. M. S.; Bennett, F.; Taylor, I. D.

J. Chem. Soc. Perkin Trans. I

, 1986, 5, 815-812.

Still, W. C.; Kempf, D.; Hauck, P. Tetrahedron Lett., 1986, 27, 2727-2730.

H

O

R

s

R

L

SnBu

3

OH

R

s

R

L

Felkin-Ahn Product

Me

OH

Me

Me

OH

Me

OH

Me

Me

BH

3

•THF

background image

3

Reduction of C=X π-Bond

Meerwein-Ponndorf-Verley Reduction

Discovered in 1920s

Commonly aluminum or boron metal center

Metal-isopropoxide or -alkyl group as reducing agent

Metal-based reductions

NaBH

4

discovered in 1942 by Brown

LiAlH

4

discovered in 1945 by Bond

Dissolving metal reduction

Transition metal mediated reduction

Pioneered by Noyori

Asymmetric Transfer Hydrogenation

Ru, Rh, Ir hydrides

η

6

-arene and diamine ligands

No hydrogen atmosphere

Isopropanol or formic acid/triethylamine as
stochiometric reducing agent

R

R'

O

O

H

Al

i

PrO

O

i

Pr

R

R'

O

O

H

Al

i

PrO

O

i

Pr

R

R'

OH

O

Ph

2

P

P

Ph

2

Ru

N

H

2

H

2

N

Ph

Ph

Cl

Cl

(S)-BINAP/(S,S)-DPEN-Ru(II) Catalyst

Ar

R

O

H

2

Ru-catalyst

base

Ar

R

OH

Ponndorf, W. Z.; Angew. Chem., 1926, 39, 138.

Ohkuma, T.; Ooka, H.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc., 1995, 117, 2675-2676.

Ph

Me

O

Ph

(S)

Me

OH

[RuCl

2

(p-cymene)]

2

(1S,2S)-N-(p-toluenesulfonyl)-1,2-

diphenylethylenediamine

i

PrOH, KOH

Hashiguchi, S.; Fujii, A.; Takehara, K.; Ikariya, T.; Noyori, R.

J. Am. Chem. Soc.

, 1995, 117, 7562-7563.

Schlesinger, H. I.; Brown, H. C.; Hoekstra, H. R.; Rapp, L. R. J. Am. Chem. Soc., 1953, 75, 199.

Finholt, A. E.; Bond, A. C. Jr.; Schlesinger, H. I. J. Am. Chem. Soc., 1947, 69, 1199.

Barton, D. H. R. J. Chem. Soc., 1953, 1027-1040.

background image

4

Outline

• Mechanism and scope of asymmetric transfer hydrogenation

• Pro-atropisomeric phosphine ligands

• Amino acid-based ligands

• Dendrimer-bound diamine ligands

• Asymmetric transfer hydrogenation in water

• Asymmetric transfer hydrogenation in ionic liquids

background image

5

Mechanism of ATH

Several gas-phase computational studies indicate concerted pathway

NTs

Ru

H

2

N

R

R

H

R

1

O

R

2

NTs

Ru

N

R

R

H

O

H

H

R

1

OH

R

2

*

NTs

Ru

HN

R

R

OH

NTs

Ru

N

R

R

H

O

R

2

R

1

H

H

O

NTs

Ru

H

2

N

R

R

Cl

KOH

Ru

Cl

Cl

Cl

Cl

Ru

(S)(S)

R

H

2

N

NHTs

R

HCl

HCl

Samec, J. S. M.; Bäckvall, J.-E.; Andersson, P. G.; Brandt, P. Chem. Soc. Rev., 2006, 35, 237-248.

Ph

Me

O

Ph

(S)

Me

OH

[RuCl

2

(p-cymene)]

2

(1S,2S)-N-(p-toluenesulfonyl)-1,2-

diphenylethylenediamine

i

PrOH, KOH

substrate:catalyst ~200:1

background image

6

Mechanism of ATH

Solution phase computational study suggests role of solvent in reduction

Ru

H

O

HN

H

C

O

H

H

1.79 Å

1.32 Å

1.31 Å

1.04 Å

2.51 Å

Ru

H

O

HN

H

C

O

H

H

H

3

C

O H

1.92 Å

1.27 Å

1.34 Å

1.40 Å

1.24 Å

2.02 Å

1.04 Å

Ru

H

O

HN

H

C

O

H

H

H

3

C

O

H

2.06 Å

1.14 Å

1.42 Å

1.02 Å

1.75 Å

1.65 Å

1.11 Å

Ru

H

O

HN

H

C

O

H

H

H

3

C

O

H

H

O

CH

3

1.14 Å

1.42 Å
1.04 Å

1.28 Å

1.27 Å

1.95 Å

1.06 Å

0.00 ps

0.69 ps

0.99 ps

1.08 ps

Handgraaf, J.-W.; Meijer, E. J. J. Am. Chem. Soc. ASAP.

background image

7

Sources of Hydrogen

Isopropanol

– Oxidation yields acetone
– Transfer hydrogenation is reversible
– After extended reaction times,

stereoselectivity erodes

Formic acid/triethylamine

– Oxidation yields carbon dioxide
– Evolution of carbon dioxide renders

reaction irreversible

– Allows for increase in reaction

concentration

Samec, J. S. M.; Bäckvall, J.-E.; Andersson, P. G.;

Brandt, P. Chem. Soc. Rev., 2006, 35, 237-248.

Koike, T. ;Ikariya, T. Adv. Synth. Catal., 2004, 346, 37-41.

NTs

Ru

H

2

N

R

R

H

R

1

O

R

2

NTs

Ru

N

R

R

H

O

H

H

R

1

OH

R

2

*

NTs

Ru

HN

R

R

OH

NTs

Ru

N

R

R

H

O

R

2

R

1

H

H

O

NTs

Ru

H

2

N

R

R

H

R

1

O

R

2

NTs

Ru

N

R

R

O

O

H

H

R

1

OH

R

2

*

NTs

Ru

HN

R

R

HO

O

H

NTs

Ru

N

R

R

H

O

R

2

R

1

H

H

C

O

O

H

background image

8

Origin of Stereoselectivity

Some influence from chiral diamine ligand

Significant contribution from arene ligand

– CH-π interaction stabilizes otherwise more-congested transition state

H

Ru

O

N

H

H

R

O

H

H

H

H

H

H

H

H

Ru

O

N

H

H

O

R

H

H

H

H

H

H

H

Addition to Si

face of carbonyl

Addition to Re

face of carbonyl

H

H

Yamakawa, M.; Yamada, I.; Noyori, R. Angew. Chem. Int. Ed., 2001, 40, 2818-2821.

vs.

background image

9

Scope of ATH

Mainly aryl-alkyl ketones (alkyl-alkynyl ketones)

– Alkyl group

Large functional group tolerance (-Cl, -OH, -CN, -N

2

, -NO

2

, -NHBOC)

Not sterically bulky

– Aryl group

High oxidation potential prefered

o-

Subtituted difficult

Electron withdrawing groups erode stereoselectivity

Heteroaromatic groups tolerated

Noyori, R.; Hashiguchi, S. Acc. Chem. Res., 1997, 30, 97-102.

Okano, K.; Murata, K.; Ikariya, T. Tetrahedron Lett., 2000, 41, 9277-9280.

Me

O

i

PrOH - 53% yield, 72% ee

HCOOH/NEt

3

- >99% yield, 97% ee

MeO

n = 1
i

PrOH - 45% yield, 91% ee

HCOOH/NEt

3

- >99% yield, 99% ee

n = 2
i

PrOH - 65% yield, 97% ee

HCOOH/NEt

3

- >99% yield, 99% ee

O

n

R

O

R = Me

>99% yield, 98% ee

R = Et

96% yield, 97% ee

R = iPr

41% yield, 83% ee

R = tBu

<1% yield

Me

O

100% yield, 86% ee

O

2

N

Me

O

R = Me

53% yield, 91% ee

R = OMe 24% yield, 89% ee

R

N

Me

O

2-acetylpyridine

99% yield, 91% ee

3-acetylpyridine

99% yield, 89% ee

4-acetylpyridine

99% yield, 92% ee

background image

10

Scope of ATH

Diketones and β-keto esters

– 1,2-diketone: alkyl ketone preferential at low temp
– 1,3-diketone: symmetrical Æ anti-diol in high ee; unsymmetrical Æ low ee
– β-Keto ester: ketone reduced over ester

Imines

– Protic solvents not tolerated
– Cyclic imines more selective than acyclic (except phosphinylimines)
– More reactive than ketones

Ph

O

Ph

O

Ph

O

Me

O

10 °C

87% yield

92% ee

Ph

O

Me

OH

40 °C

78% yield

95% ee

Ph

OH

Me

OH

anti

:sy n - 98.6:1.4

100% yield, >99% ee

MeO

MeO

N

Me

>99% yield

95% ee

NBn

Me

72% yield

77% ee

N

Me

99% ee

P

Ph

O

Ph

Murata, K.; Okano, K.; Miyagi, M.; Iwane, H.; Noyori, R.; Ikaria, T. Org. Lett., 1999, 1, 1119-1121.

Koike, T.; Murata, K.; Ikariya, T. Org. Lett., 2000, 2, 3833-3836.

Cossy, J.; Eustache, F.; Dalko, P. I. Tetrahedron Lett., 2001, 42, 5005-5007.

Everaere, K.; Morteux, A.; Carpentier, J.-F. Adv. Synth. Catal., 2003, 345, 67-77.

Noyori, R.; Hashiguchi, S. Acc. Chem. Res., 1997, 30, 97-102.

Gladiali, S.; Alberico, E. Chem. Soc. Rev., 35, 226-236.

O

O

O

O

anti

:sy n = 95:5

85% yield

Ph

O

O

Me

ant i

:sy n = 56:42

79% yield

Ph

O

O

OEt

Me

O

O

OtBu

99% yield

94% ee

99% yield

68% ee

background image

11

Outline

• Mechanism and scope of asymmetric transfer hydrogenation

• Pro-atropisomeric phosphine ligands

• Amino acid-based ligands

• Dendrimer-bound diamine ligands

• Asymmetric transfer hydrogenation in water

• Asymmetric transfer hydrogenation in ionic liquids

background image

12

Pro-atropisomeric Phosphine Ligand

Noyori received 2001 Nobel Prize for H

2

hydrogenation

Utilizes optically pure BINAP ligands

BINAP can be resolved into pure (+) and (-) enantiomers due to high barrier
of rotation about the aryl-aryl bond (atropisomeric)

Ph

2

P

P

Ph

2

Ru

N

H

2

H

2

N

Ph

Ph

Cl

Cl

(S)-BINAP/(S,S)-DPEN-Ru(II) Catalyst

Ar

R

O

H

2

Ru catalyst

base

Ar

Me

OH

(R)

PAr

2

PAr

2

(S)-BINAP

Noyori, R.; Asymmetric Catalysis: Science and Opportunities. Nobel Lecture, 8 December 2001.

background image

13

Pro-atropisomeric Phosphine Ligand

BIPHEP and DPBP have significantly lower barriers of rotation (tropisomeric
or pro-atropisomeric)

– Optically pure isomers cannot be isolated in solution
– Benzophenone (and derivatives) forms enantiomers in solid state

PAr

2

PAr

2

(S)-BINAP

PAr

2

PAr

2

BIPHEP

O

PAr

2

PAr

2

DPBP

PPh

2

O

PPh

2

Ph

2

P

O

PPh

2

(P)-Conformation

(M)-Conformation

Jing, Q.; Sandoval, C.; Wang, Z.; Ding, K. Eur. J. Org. Chem., 2006, 3606-3616.

background image

14

(From M enantiomer)

Ru

Ph

2

P

N

H

2

Cl

H

N

P

Ph

2

Ph

Ph

O

Pro-atropisomeric Phosphine Ligand

Complexing DPBP to metal with diamine ligand forces single diastereomer
of metal complex

Jing, Q.; Sandoval, C.; Wang, Z.; Ding, K. Eur. J. Org. Chem., 2006, 3606-3616.

background image

15

Pro-atropisomeric Phosphine Ligand

BINAP not conducive to ATH

Pro-atropisomeric DPBP successful for ATH – First pro-atropisomeric
phosphine used in ATH

Catalyst for alkyl-alkyl reductions?

Mikami, K.; Wakabayashi, K.; Yusa, Y.; Aikawa, K. Chem. Commun., 2006, 2365-2367.

Noyori, R.; Hashiguchi, S. Acc. Chem. Res., 1997, 30, 97-102.

O

O

O

O

Ligand

= (R)-BINAP

98 % conv. 72 % ee

Ligand

= DPBP

>99 % conv. 99 % ee

Ligand

= (R)-BINAP

61 % conv. 57 % ee

Ligand

= DPBP

99 % conv. 99 % ee

Ligand

= (R)-BINAP

97 % conv. 68 % ee

Ligand

= DPBP

95 % conv. 91 % ee

Ligand

= (R)-BINAP

96 % conv. 71 % ee

Ligand

= DPBP

97 % conv. 89 % ee

R

Me

O

R

Me

OH

Rh-catalyst, ligand, (S,S)-DPEN

KOtBu, iPrOH, rt, 24 h

Rh

Rh-Catalyst

PAr

2

PAr

2

(R)-BINAP

O

PAr

2

PAr

2

DPBP

(S)

(S)

H

2

N

Ph

Ph

H

2

N

+

SbF

6

-

(S,S)-DPEN

Noyori's Catalyst

95% conv. 97% ee

Noyori's Catalyst

53% conv. 91% ee

Noyori's Catalyst

92% conv., 93% ee

NTs

Ru

H

2

N

Ph

Ph

Cl

(R) (R)

Noyori's Catalyst

(R)

background image

16

Outline

• Mechanism and scope of asymmetric transfer hydrogenation

• Pro-atropisomeric phosphine ligands

• Amino acid-based ligands

• Dendrimer-bound diamine ligands

• Asymmetric transfer hydrogenation in water

• Asymmetric transfer hydrogenation in ionic liquids

background image

17

Amino Acid-Based Ligands

Initially, amido-oxazoline ligands were targeted

Poor yield, stereoselectivity in ATH

Noticed synthetic precursor provided better selectivity than target

N

O

O

N

HN

R

1

O

Me

Me

O

HN

R

2

R

1

R

2

N

O

O

N

HN

R

1

O

Me

Me

O

HN

R

2

R

1

R

2

R

1

NHBoc

N

H

O

R

2

OH

Pastor, I. M.; Västilä, P.; Adolfsson, H. Chem. Commun., 2002, 2046-2047.

background image

18

Amino Acid-Based Ligands

Boc group & free hydroxyl group crucial

Amino acid stereocenter more important than amino alcohol stereocenter

1-amino-2-alcohols catalyze ATH with similar yield and ee

Pastor, I. M.; Västilä, P.; Adolfsson, H. Chem. Eur. J., 2003, 9, 4031-4045.

Bøgevig, A.; Pastor, I. M.; Adolfsson, H. Chem. Eur. J., 2004, 10, 294-302.

(S)

Me

OH

(S)

Me

BocHN

N

H

O

(S)

Ph

Me

O

Ru-catalyst, ligand

NaOH, iPrOH

Ru

Cl

Cl

Cl

Cl

Ru-Catalyst

Ru

91% Conversion, 94% ee

OH

(S)

Me

BocHN

N

H

O

(R)

Ph

OH

95% Conversion, 93% ee

background image

19

Amino Acid-Based Ligands

Ru(II)(η

6

-arene) complexes known to facilitate peptide formation

Provides template to form ligand in situ, form catalyst in situ, and conduct
ATH in one pot

Ru

H

2

N

Cl

O

O

H

2

N

OMe

O

R

2

-HCl

Ru

HN

H

2

N

O

O

R

2

O

OMe

-MeOH

Ru

N

H

2

N

O

O

R

2

O

R

1

R

1

R

1

Ru

Cl

Cl

Cl

Cl

Ru

H

2

N

OH

O

R

1

-HCl

(S)

NHBoc

Me

O

O

NO

2

H

2

N

(S)

Me

OH

1) iPrOH, Δ, 1h

2) iPrONa, Ru-catalyst,

ketone
i

PrOH, rt, 1h

(S)

Me

OH

Ketone (R=)

Conversion (%)

ee

(%)

R

H

85

97

m

-Me

83

97

o

-F

90

92

m

-OMe

86

97

3,5-OMe

82

97

3,4,5-OMe

45

99

Ru

Cl

Cl

Cl

Cl

Ru

Ru-Catalyst

Haas, K.; Beck, W. Eur. J. Inorg. Chem., 2001, 2485-2488.

Västilä, P.; Wettergren, J.; Adolfsson, H. Chem. Commun., 2005, 4039-4041.

background image

20

Amino Acid-Based Ligands

Mechanism elusive for several years

Key clues:

– Necessity of NH

Boc

, N

H

C(O)R, O

H

groups

– 3 equivalents of base necessary

– Additives

• Strong Lewis acid additives (Sc(OTf)

3

, Ti(OiPr)

4

) have negative effect on reactivity

• NaCl or KCl additive - similar to nonadditive reactions

• LiCl - higher stereoselectivity (also LiBr, LiI, LiClO

4

, LiOAc)

– Replacing NaOiPr with LiOiPr as base (no additive) increased stereoselectivity to

the same extent as LiCl additive

– No additive effect of LiCl with traditional transfer hydrogenation systems

Västilä, P.; Zaitsev, A. B.; Wettergren, J.; Privalov, T.; Adolfsson, H. Chem. Eur. J., 2006, 12, 3218-3225.

R

1

NHBoc

N

H

O

R

2

OH

background image

21

Amino Acid-Based Ligands

Proposed mechanism:

Lithium ion activates and directs incoming ketone

Smaller lithium ion forms tighter transition state

Crown ethers erode stereoselectivity

CH-π interactions not as important

Ru

N

O

N

H

Me

O

H

O

OtBu

Me

OLi

H

O

Ph

Ph

O

H

LiO

Ru

N

H

N

O

Me

O

H

O

OtBu

Me

Li

H

H

O

Li O

Ru

H

N

N

Me

R

H

O

OtBu

Me

O

Me

Västilä, P.; Zaitsev, A. B.; Wettergren, J.; Privalov, T.; Adolfsson, H. Chem. Eur. J., 2006, 12, 3218-3225.

background image

22

Amino Acid-Based Ligands

Previously, other product stereoisomer obtained through un-natural amino acid ligand

Modification from amide to thioamide, removal of alcohol reverses stereoselectivity

NHBoc

(S)

OH

O

1) N-methylmorpholine

i

-BuOC(O)Cl, -15 °C, 1h

2)

rt, 3 h, THF

BocHN

(S)

N

O

( S)

H

Lawesson's Reagent

THF, 60 °C, 8h

BocHN

(S)

N

S

( S)

H

97%

77%

H

2

N

(S)

Me

Ph

Me

Ph

Me

Ph

Pastor, I. M.; Västilä, P.; Adolfsson, H. Chem. Eur. J., 2003, 9, 4031-4045.

Zaitsev, A. B.; Adolfsson, H. Org. Lett., 2006, 8, 5129-5132.

Me

O

Ru-catalyst, ligand

NaOH, iPrOH

Me

OH

*

Ru

Cl

Cl

Cl

Cl

Ru

Ru-Catalyst

NH

2

(S)

Me

O

N

H

(R)

Ph

OH

NH

2

(R)

Me

O

N

H

(S)

Ph

OH

Ligand A

Ligand B

Ligand A - 95% yield, 93% ee (S)

Ligand B - 91% yield, 93% ee (R)

background image

23

Amino Acid-Based Ligands

R

2

O

R

1

Rh-catalyst, ligand

LiCl, iPrONa, iPrOH

R

2

OH

R

1

*

Rh

Cl

Cl

Cl

Cl

Rh

NHBoc

(S)

N

H

S

(S)

Ph

NHBoc

(S)

Me

N

H

O

( R)

OH

Ru

Cl

Cl

Cl

Cl

Ru

Ph

Me

O

O

O

Me

O

Me

Me

Me

MeO

Catalyst A: 95% yield, 93% ee, (S)

Catalyst B: 88% yield, 95% ee, (R)

Catalyst A: 91% yield, 95% ee, (S)

Catalyst B: 88% yield, 96% ee, (R)

Catalyst A: 53% yield, 86% ee, (S)

Catalyst B: 61% yield, 97% ee, (R)

Catalyst A: 63% yield, 95% ee, (S)

Catalyst B: 56% yield, 91% ee, (R)

Catalyst A

Catalyst B

Pastor, I. M.; Västilä, P.; Adolfsson, H. Chem. Eur. J., 2003, 9, 4031-4045.

Zaitsev, A. B.; Adolfsson, H. Org. Lett., 2006, 8, 5129-5132.

background image

24

Outline

• Mechanism and scope of asymmetric transfer hydrogenation

• Pro-atropisomeric phosphine ligands

• Amino acid-based ligands

• Dendrimer-bound diamine ligands

• Asymmetric transfer hydrogenation in water

• Asymmetric transfer hydrogenation in ionic liquids

background image

25

Recoverable Diamine Ligands

Recoverable systems important with expensive or toxic heavy metal
complexes

Immobilization on supporting apparatus can allow for recovery

For ATH, two classes of dendrimers initially tested

Chen, Y.-C.; Wu, T.-F.; Deng, J.; Liu, H.; Jiang, Y.-Z.-, Choi, M. C. K.; Chan, A. S. C. Chem. Commun, 2001, 1488-1489.

Chen, Y.-C.; Wu, T.-F.; Deng, J.; Liu, H.; Xin, C.; Zhu, J.; Jiang, Y.-Z.; Choi, M. C. K.; Chan, A. S. C. J. Org. Chem., 2002, 67, 5301-5306

(S)(S)

H

2

N

HN

S

H

N C

O

O

O

O

O

O

O

O

O

n = 3

Ph

O

Me

Ru-catalyst, ligand

HCOOH/NEt

3

, CH

2

Cl

2

Ph

(S)

OH

Me

Run #

t (h) Conversion (%) ee (%)

1

20

98

96.5

2

20

92

96.6

3

25

87

96.8

4

30

85

96.7

5

40

73

96.3

6

40

52

87

Ru

Cl

Cl

Cl

Cl

Ru

Ru-Catalyst

O

R

2

R

1

Ru-catalyst, ligand

HCOOH/NEt

3

, CH

2

Cl

2

(R)

OH

R

2

R

1

R

1

t (h) Conversion (%) ee (%)

o

-Cl

24

> 99

95.5

p

-tBu

55

98

96.3

R

2

H
H

H

CH

2

C(O)Ph

72

70

>99

H

(CH

2

)

4

C(O)Ph

72

67

>99

Ru

Cl

Cl

Cl

Cl

Ru

Ru-Catalyst

O

O

O

O

C

CCH

2

NH

O

HN

O

O

O

O

CCH

2

NH

O

CCH

2

NH

CCH

2

NH

O

N

H

N

H

N

H

S

S

S

HN

O

O

HN

O

O

HN

O

O

(R)

Ph

( R)

Ph

H

2

N

(R)

Ph

(R)

Ph

H

2

N

(R)

Ph

(R)

Ph

H

2

N

O

O

O

O

Ph

Ph

Ph

Ph

background image

26

Recoverable Diamine Ligands

Late-stage tunability of ligand/dendrimer compatible with varying nature of
ketone substrates

Recovery procedure:

Remove CH

2

Cl

2

in vacuo

Precipitate dendrimer with MeOH

Filter

Liu, W.; Cui, X.; Cun, L.; Zhu, J.; Deng, J. Tetrahedron: Asymmetry, 2005, 16, 2525-2530.

O

O

O

Ph

Ph

NH

2

NH

2

O

O

O

Ph

Ph

n

n

*

*

Ar

SO

2

Cl, (iPr)

2

NEt

CH

2

Cl

2

, 0 °C - rt

O

O

O

Ph

Ph

NH

NH

2

O

O

O

Ph

Ph

n

n

*

*

SO

2

Ar

Ph

O

Me

Ru-catalyst, ligand

HCOOH/NEt

3

, CH

2

Cl

2

, rt

Ph

OH

Me

*

n

Configuration

Ar

time (h)

Conversion (%)

ee

(%)

Configuration

0

4-CH

3

C

6

H

4

(R,R)

20

95

96.8

R

1

4-CH

3

C

6

H

4

(R,R)

20

>99

96.6

R

2

4-CH

3

C

6

H

4

(R,R)

20

97.1

96.1

R

(95.4, 90.2, 83.7, 71.2) (97.5, 97.2, 97.5, 97.0)

3

4-CH

3

C

6

H

4

(R,R)

20

75

94.6

R

2

2,4,6-Et

3

-C

6

H

2

(S,S)

20

93.0

91.7

S

2

2,4,6-iPr

3

-C

6

H

2

(S,S)

20

91.7

92.8

S

2

1-naphthyl

(S,S)

20

>99

96.3

S

Ru

Cl

Cl

Cl

Cl

Ru

Ru-Catalyst

background image

27

Recoverable Diamine Ligands

Minimize organic solvent – run ATH in water

– Switch to 1,2-diaminocyclohexane-based ligands and Cp* rhodium catalyst

system

Recovery procedure:

– Add hexanes
– Remove organic layer
– Add HCOOH to pH ~7

(R)(R)

H

2

N

S

H

N C

O

O

O

O

O

HN

O

Me

R

Catalyst, ligand

"H

2

"-source Solvent

Catalyst

"H

2

"-source

Solvent

R

Conversion (%)

ee

(%)

(R)

OH

Me

R

Ru

HCOOH/NEt

3

CH

2

Cl

2

H

>99

94

Ru

HCOONa

H

2

O

H

>99

88

Rh

HCOONa

H

2

O

H

>99

96

Rh

HCOONa

H

2

O

p

-OMe

95

94

Rh

HCOONa

H

2

O

o

-OMe

>99

81

(>99, 98, 99, 85, 97) (96, 95, 94, 95, 95, 95)

O

99% Conversion

97% ee

N

Me

O

70% Yield

91% ee

97% Yield

72% ee

94% Yield

52% ee

OEt

O

O

Ph

Me

O

Ru

Cl

Cl

Cl

Cl

Ru

Ru-Catalyst

Rh

Cl

Cl

Cl

Cl

Rh

Rh-Catalyst

BnO

OBn

OBn

BnO

Ligand

Jiang, L.; Wu, T.-F.; Chen, Y.-C.; Zhu, J.; Deng, J. Org. Biomol. Chem., 2006, 4, 3319-3324.

background image

28

Outline

• Mechanism and scope of asymmetric transfer hydrogenation

• Pro-atropisomeric phosphine ligands

• Amino acid-based ligands

• Dendrimer-bound diamine ligands

• Asymmetric transfer hydrogenation in water

• Asymmetric transfer hydrogenation in ionic liquids

background image

29

ATH in Water

• Increases atom economy and environmental friendliness

– Often no organic solvents during reaction

• Allows for ease of product separation, possibility of

catalyst recyclability

– Distillation or extraction

• Vigorously dried solvents and substrates not necessary

background image

30

ATH in Water – Early Work

Bujoli group reported phosphonate-substituted diamine ligands with rhodium
metal-catalyzed ATH

High conversions (~ 95%), moderate ee (34-60%), cosolvent needed,
catalyst preparation under inert atmosphere

(R)

(R)

NH

NH

Me

Me

(HO)

2

P

(HO)

2

P

O

O

(S)

(S)

NH

NH

Me

Me

(HO)

2

P

(HO)

2

P

O

O

Maillet, C.; Praveen, T.; Janvier, P.; Minguet, S.; Evain, M.; Saluzzo, C.; Tommasion, M. L.; Bujoli, B. J. Org. Chem., 2002, 67, 8191-8196.

Me

O

Rh-catalyst, ligand

t

BuOK, 1:1 H

2

O:iPrOH

(S)

Me

OH

95% yield

46% ee

Rh

Cl
Cl Rh

(R)

(R)

NH

NH

Me

Me

(HO)

2

P

(HO)

2

P

O

O

Rh-Catalyst

Ligand

background image

31

ATH in Water - Advances

Deng group developed o-sulfonated ligands with ruthenium catalyst and
HCOONa as hydrogen source

Purification difficult

(R)

(R)

NH

2

NH

2

1) 50% SO

3

oleum

0 °C - rt, 22 h

2) BaCO

3

(R)

(R)

NH

2

NH

2

SO

3

-

SO

3

-

Ba

2

+

TsCl, NaOH/SDS

H

2

O/CH

2

Cl

2

, 0 °C - rt, 24 h

then Na

2

SO

4

(R)

(R)

NHTs

NH

2

SO

3

Na

SO

3

Na

C

12

H

25

OSO

3

Na

SDS =

68%

72%

Ma, Y.; Liu, H.; Chen, L.; Cui, X.; Zhu, J.; Deng, J. Org. Lett., 2003,5, 2103-2106.

background image

32

ATH in Water - Advances

Recyclability possible – retention of stereoselectivity, loss of conversion
(99% Æ 75%)

Surfactant required for satisfactory conversion

Ru

Cl

Cl

Cl

Cl

Ru

O

R

R

Yield (%) ee (%)

p

-Me

94

94

p

-F

88

92

O

n

n

Yield (%) ee (%)

1

66

83

2

21

98

O

R

R Yield (%) ee (%)

87

94

58

84

Br

H

NO

2

Ru-catalyst, ligand

H

2

O, HCO

2

Na, SDS

R

1

R

2

O

R

1

R

2

OH

NHTs

NH

2

(R)

(R)

SO

3

Na

SO

3

Na

Ru-Catalyst

Ligand

C

12

H

25

OSO

3

Na

SDS

(R)

Ma, Y.; Liu, H.; Chen, L.; Cui, X.; Zhu, J.; Deng, J. Org. Lett., 2003,5, 2103-2106.

background image

33

ATH in Water – Recent Work

Shift to o-amine ligand and Cp* rhodium catalyst allows for increased yields,
stereoselectivities, and scope over previous work

Surfactant no longer necessary

R

1

R

2

O

Rh-catalyst, ligand

HCOONa, H

2

O

R

1

R

2

OH

NHTs

NH

2

(S)

(S)

NH

2

NH

2

Ligand

Rh-catalyst

O

R

2

R

1

R

1

R

2

Yield (%) ee (%)

p

-OMe

H

92

96

o

-OMe

H

90

88

p

-F

H

94

95

p-

Br

H

92

94

H

Br

91

97

p

-NO

2

Br

82

90

O

88% yield

97% ee

S

Me

O

90% yield

98% ee

Rh

Cl

Cl

Cl

Cl

Rh

(S)

Li, L.; Wu, J.; Wang, F.; Liao, J.; Zhang, H.; Lian, C.; Zhu, J.; Deng, J. Green Chem., 2007,9, 23-25.

background image

34

2-Bromo-1-arylethanols

Key intermediates in syntheses of β-adrenergic receptor agonists

Agonists used as bronchodilators in asthmatics

Non-aqueous synthesis by ATH previously hampered

O

Br

(R)

OH

Br

Ru-catalyst, ligand

HCOOH/NEt

3

, 28 °C

Ru

Cl

Cl

Cl

Cl

Ru-Catalyst

Ru

NHTs

NH

2

(R)

(R)

Ligand

O

OCHO

0%

73%

Cross, D. J.; Kenny, J. A.; Houson, I.; Campbell, L.; Walsgrove, T.; Wills, M. Tetrahedron: Asymmetry, 2001, 12, 1801-1806.

background image

35

2-Bromo-1-arylethanols

Changing to aqueous system allows for reduction

Ma, Y.; Liu, H.; Chen, L.; Cui, X.; Zhu, J.; Deng, J. Org. Lett., 2003,5, 2103-2106.

Wang, F.; Liu, H.; Cun, L.; Zhu, J.; Deng, J.; Jiang, Y. J. Org. Chem., 2005, 70, 9424-9429.

Li, L.; Wu, J.; Wang, F.; Liao, J.; Zhang, H.; Lian, C.; Zhu, J.; Deng, J. Green Chem., 2007,9, 23-25.

(R)

OH

Br

R

1

R

2

R

3

R

1

R

2

R

3

Yield (%)

ee

(%)

Surfactant

H

H

H

SDS

87

94

H

H

SDS

47

92

OBn

H

H

H

2:1 SDS:CTAB

97

98

H

OMe

H

2:1 SDS:CTAB

80

90

NO

2

OBn

2:1 SDS:CTAB

H

87

93

H

H

H

91

97

H

OMe

H

70

96

OBn

H

OBn

82

95

O

Br

R

1

R

2

R

3

catalyst, ligand

Surfactant, HCOONa, H

2

O

CH

2

Cl

2

cosolvent

Rh

Cl

Cl

Cl

Cl

Rh

NHTs

NH

2

(R)

(R)

R

4

R

4

Ligand

Rh-Catalyst

Catalyst Ligand

Ru

Cl

Cl

Cl

Cl

Ru-Catalyst

C

12

H

25

OSO

3

Na

SDS

Ru

C

16

H

33

N

Me

Me

Me

Br

-

CTAB

A - R

4

= SO

3

Na

B - R

4

= H

C - R

4

= NH

2

Ru

A

Ru

A

Rh

B

Rh

B

Rh

B

Rh

C

Rh

C

Rh

C

background image

36

(R,R)-Formoterol

Long-acting, β

2

-agonist

Bronchodilator in treatment of patients with asthma and chronic bronchitis

(R,R)-enantiomer more active than other 3 possible stereoisomers

Wilkinson, H. S.; Tanoury, G. J.; Wald, S. A.; Senanayake, C. H. Org. Process Res. Dev., 2002, 6, 146-148.

Li, L.; Wu, J.; Wang, F.; Liao, J.; Zhang, H.; Lian, C.; Zhu, J.; Deng, J. Green Chem., 2007,9, 23-25.

O

Br

BnO

BH

3

-diethylaniline,

(R,S)-aminoindanol

THF

(R)

OH

Br

BnO

NO

2

NO

2

O

Br

BnO

Rh-catalyst, ligand

2:1 SDS:CTAB, HCOONa, H

2

O

(R)

OH

Br

BnO

87% yield, 93% ee

2.3 kg, 80% yield, 88% ee

Rh

Cl

Cl

Cl

Cl

Rh

NHTs

NH

2

(R)

(R)

Ligand

Rh-Catalyst

NO

2

NO

2

HO

OH

OMe

Me

H

N

NHCHO

(R,R)-formoterol

background image

37

(R,R)-Formoterol

OH

Br

BnO

MeOH, aq NaOH

98%

BnO

O

OMe

BnHN

Me

1) neat, 90 °C

2) PtO

2

, H

2

3) HCOOH

BnO

OH

OMe

Me

Bn

N

NHCHO

NO

2

NO

2

1) Pd-C, H

2

, EtOH

2)

L

-tartaric acid, iPrOH

85%

HO

OH

OMe

Me

H

N

NHCHO

(R,R)-formoterol

45%, 3 steps

+

Hett, R.; Fang, Q. K.; Gao, Y.; Hong, Y.; Butler, H. T.; Nie, X.; Wald, S. Tetrahedron Lett., 1997, 38, 1125-1128.

background image

38

ATH in Water - Imines

Noyori reported ATH of imines not conducive to protic solvents

Deng achieved reduction in water with o-sulfonated diamine ligands

– Acyclic imines unsuccessful

Recovery procedure

Extract (3x) with 1:1 Et

2

O:hexanes

Add 1 eq. HCOOH

Ready for reuse

MeO

MeO

N

R

R

Yield (%)

ee

(%)

Me

97

95

Et

68

92

i

Pr

90

90

MeO

MeO

S

N

R

Yield (%)

ee

(%)

Me

97

65

t

Bu

95

94

O

O

R

97

94
94

95
96

94

85

94

Recycle

Experiments

MeO

MeO

N

+

R

Bn

R

Yield (%)

ee

(%)

Me

85

90

Ph

94

95

N

R

Ru-catalyst, ligand, CTAB

HCOONa, H

2

O, 28 °C

NH

R

C

16

H

33

N

Me

Me

Me

Br

-

CTAB

NHTs

NH

2

(R)

(R)

SO

3

Na

SO

3

Na

Ru-Catalyst

Ligand

Ru

Cl

Cl

Cl

Cl

Ru

( S)

Wu, J.; Wang, F.; Ma, Y.; Cui, X.; Cun, L.; Zhu, J.; Deng, J.; Yu, B. Chem. Commun., 2006,1766-1768.

background image

39

Outline

• Mechanism and scope of asymmetric transfer hydrogenation

• Pro-atropisomeric phosphine ligands

• Amino acid-based ligands

• Dendrimer-bound diamine ligands

• Asymmetric transfer hydrogenation in water

• Asymmetric transfer hydrogenation in ionic liquids

background image

40

ATH in Ionic Liquids

• Ionic liquid: salt of organic cation with melting point near

ambient temperature

• Can stabilize/immobilize transition metal catalysts
• Negligible vapor pressure
• Tunable miscibility
• Easy recyclability

N

N

Me

BF

4

-

Me

[bmim][BF

4

] =

butylmethylimidazolium tetrafluoroborate

background image

41

ATH in Ionic Liquids

Synthesis of ionic liquid-supported precursor

H

2

N

Cl

NHTs

Ph

Ph

Ru

N

N

Me

Me

Cl

N

N

Me

Me

toluene, 110 °C

1)

2) NaBF

4

, CH

2

Cl

2

N

N

BF

4

-

Me

Me

RuCl

3

MeOH, 80 °C

BF

4

-

BF

4

-

Ru

Cl

Cl

Cl

Ru

Cl

N

N

Me

Me

Ph

NHTs

H

2

N

Ph

DMF, rt

N

N

Me

Me

BF

4

-

Geldbach, T. J.; Dyson, P. J. J. Am. Chem. Soc., 2004, 126, 8114-8115.

background image

42

ATH in Ionic Liquids

Recovery procedure:

Extract – Et

2

O or hexanes

Wash – water

Dry in vacuo

H

2

N

Cl

NHTs

Ph

Ph

Ru

(R)

(R)

Me

O

catalyst, [bmmim][PF

6

]

HCOOH/NEt

3

, 40 °C, 24 h

(R)

Me

OH

Cycle #

Catalyst A

(% yield,

% ee)

Catalyst B

(% yield,

% ee)

1

>99%, 99% >99%, 99%

2

>99%, 99% >99%, 99%

3

>99%, 99%

80%, 99%

4

99%, 99%

45%, 99%

5

96%, 99%

H

2

N

Cl

NHTs

Ph

Ph

Ru

(R)

(R)

BF

4

-

N

N

Me

Me

Catalyst A

Catalyst B

Cycle #

R =

Conversion (%)

ee

(%)

1

o

-Me

72%

97%

2

p

-Cl

99%

95%

3

H

99%

99%

4

H

98%

99%

1

Acetophenone

99%

97%

2

Tetralone

99%

97%

3

Benzaldehyde

90%

N/A

N

N

Me

Me

n

Bu

PF

6

-

[bmmim][PF

6

]

Geldbach, T. J.; Dyson, P. J. J. Am. Chem. Soc., 2004, 126, 8114-8115.

background image

43

ATH in Ionic Liquids

Library of ionic liquids screened

– Hydrophilic ILs inhibit reaction
– Hydrophobic ILs slow reaction, but good ee

Joerger, J.-M.; Paris, J.-M.; Vaultier, M. Arkivoc, 2006, 152-160.

Me

O

Ionic

Liquid

Cycle #

Time (h) Conversion (%)

ee

(%)

[bmim][PF

6

]

1

31

97

96

2

50

92

95

3

95

46

89

[bmim][BF

4

]

40

<1

-

[bmim][MeSO

4

]

48

19

85

[emim][OTf]

24

0

-

Hydrophilic

Ionic Liquids

[bmim][NTf

2

]

1

27

98

96

2

21

58

96

[tmba][NTf

2

]

1

26

98

97

2

41

99

97

3

94

99

97

4

50

56

96

Hydrophobic

Ionic Liquids

(S)

Me

OH

catalyst, ionic liquid

HCOOH/NEt

3

N

N

Me

n

Bu

BF

4

-

[bmim][BF

4

]

N

N

Me

Et

[emim][OTf]

-

O

CF

3

S

O

O

N

+

Me

Me

Me

n

Bu

N

-

CF

3

S

O

O

F

3

C

S

O

O

[tmba][NTf

2

]

H

2

N

Cl

NHTs

Ph

Ph

Ru

(S)

(S)

Catalyst

background image

44

Conclusions

• Role of solvent in transition state may be significant
• Pro-atropisomeric phosphine ligands can impart

stereocontrol

• Ligands based on naturally-occurring amino acids

suitable for ATH

• Catalyst can be recovered and reused
• ATH can be run in water or ionic liquid

• Future directions:

– Increase substrate:catalyst ratio
– Expand scope
– Improve recoverability further

background image

45

Acknowledgments

Acknowledgments

Professor Crimmins

Crimmins Group Members

UNC Chemistry


Document Outline


Wyszukiwarka

Podobne podstrony:
recent developments in cannabinoid ligands life sci 77 1767 1798 (2005)
Fill in blanks transforming the words in brackets
recent developments in the med chem of cannabimimetic indoles pyrroles and indenes curr med chem 12
Stepanova Terrorism in asymmetrical conflict
Bernays, Edward L , Recent Trends in Public Relations Activities (1937)
Miller Recent Developments In Slab A Software Based System For Interactive Spatial Sound Synthesis
1998 Recent developments in superstring theory Schwarz
In festo transfigurationis Domini nostri Jesu Christi, S 188 (Liszt, Franz)
Recent Developments in Cosmology
CEREBRAL VENTICULAR ASYMMETRY IN SCHIZOPHRENIA A HIGH RESOLUTION 3D MR IMAGING STUDY
Transformations in Suniti Namyoshiĺs Snapshots of?liban
Effects of Clopidogrel?ded to Aspirin in Patients with Recent Lacunar Stroke

więcej podobnych podstron