Recent Advances in Asymmetric
Transfer Hydrogenation
Adam M. Azman
8 March 2007
1
Chiral Secondary Alcohols and Amines
•
Chiral secondary alcohols and amines prevalent
•
Important as intermediates
Me
Me
Me
O
Me
3
Si
Me
Me
Me
HO
Me
3
Si
Me
Me
Me
H
H
HO
H
or
Me
Me
Me
H
H
H
2
C
(−)-β-cubebene
(−)-cubebol
MeO
MeO
N
H
N
Me
H
H
HN
OH
tubulosine
O
N
H
Me
CF
3
HCl
fluoxetine hydrochloride
(Prozac)
HO
OH
OMe
Me
H
N
NHCHO
(R,R)-formoterol
Fürstner, A.; Hannen, P. Chem. Eur. J., 2006, 12, 3006-3019.
Hett, R.; Fang, Q. K.; Gao, Y.; Hong, Y.; Butler, H. T.; Nie, X.; Wald, S. Tetrahedron Lett., 1997, 38, 1125-1128.
2
Formation of Chiral Secondary Alcohols
•
Addition to aldehyde
–
Organometallic Nucleophile
–
Aldol
N
O
•
Epoxide opening
•
Asymmetric carbonyl/imine reduction
Chérest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett., 1968, 18, 2199-2204.
Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K.
J. Org. Chem.
, 2001, 66, 895-902.
R
S
O
Me
L
3
Ti
H
O
R
1
N
O
R
S
O
OH
R
1
"Evans Syn" Product
O
MeLi
Me
OH
Alexakis, A.; Vrancken, E.; Mangeney, P.; Chemla, F.
J. Chem. Soc. Perkin Trans. I
, 2000, 3352.3353.
Ph
Me
O
Ph
(S)
Me
OH
[RuCl
2
(p-cymene)]
2
(1S,2S)-N -(p-toluenesulfonyl)-1,2-
diphenylethylenediamine
i
PrOH, KOH
Hashiguchi, S.; Fujii, A.; Takehara, K.; Ikariya, T.; Noyori, R.
J. Am. Chem. Soc.
, 1995, 117, 7562-7563.
•
Asymmetric alkene oxidation
–
Hydroboration
–
Dihydroxylation
OsO
4
NMO
O
O
O
Me
Me
OH
O
O
O
Me
Me
OH
OH
OH
O
O
O
O
Me
Me
Me
Me
H
H
Brimacombe, J. S.; Hanna, R.; Kabir, A. K. M. S.; Bennett, F.; Taylor, I. D.
J. Chem. Soc. Perkin Trans. I
, 1986, 5, 815-812.
Still, W. C.; Kempf, D.; Hauck, P. Tetrahedron Lett., 1986, 27, 2727-2730.
H
O
R
s
R
L
SnBu
3
OH
R
s
R
L
Felkin-Ahn Product
Me
OH
Me
Me
OH
Me
OH
Me
Me
BH
3
•THF
3
Reduction of C=X π-Bond
•
Meerwein-Ponndorf-Verley Reduction
–
Discovered in 1920s
–
Commonly aluminum or boron metal center
–
Metal-isopropoxide or -alkyl group as reducing agent
•
Metal-based reductions
–
NaBH
4
discovered in 1942 by Brown
–
LiAlH
4
discovered in 1945 by Bond
–
Dissolving metal reduction
•
Transition metal mediated reduction
–
Pioneered by Noyori
•
Asymmetric Transfer Hydrogenation
–
Ru, Rh, Ir hydrides
–
η
6
-arene and diamine ligands
–
No hydrogen atmosphere
–
Isopropanol or formic acid/triethylamine as
stochiometric reducing agent
R
R'
O
O
H
Al
i
PrO
O
i
Pr
R
R'
O
O
H
Al
i
PrO
O
i
Pr
R
R'
OH
O
Ph
2
P
P
Ph
2
Ru
N
H
2
H
2
N
Ph
Ph
Cl
Cl
(S)-BINAP/(S,S)-DPEN-Ru(II) Catalyst
Ar
R
O
H
2
Ru-catalyst
base
Ar
R
OH
Ponndorf, W. Z.; Angew. Chem., 1926, 39, 138.
Ohkuma, T.; Ooka, H.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc., 1995, 117, 2675-2676.
Ph
Me
O
Ph
(S)
Me
OH
[RuCl
2
(p-cymene)]
2
(1S,2S)-N-(p-toluenesulfonyl)-1,2-
diphenylethylenediamine
i
PrOH, KOH
Hashiguchi, S.; Fujii, A.; Takehara, K.; Ikariya, T.; Noyori, R.
J. Am. Chem. Soc.
, 1995, 117, 7562-7563.
Schlesinger, H. I.; Brown, H. C.; Hoekstra, H. R.; Rapp, L. R. J. Am. Chem. Soc., 1953, 75, 199.
Finholt, A. E.; Bond, A. C. Jr.; Schlesinger, H. I. J. Am. Chem. Soc., 1947, 69, 1199.
Barton, D. H. R. J. Chem. Soc., 1953, 1027-1040.
4
Outline
• Mechanism and scope of asymmetric transfer hydrogenation
• Pro-atropisomeric phosphine ligands
• Amino acid-based ligands
• Dendrimer-bound diamine ligands
• Asymmetric transfer hydrogenation in water
• Asymmetric transfer hydrogenation in ionic liquids
5
Mechanism of ATH
•
Several gas-phase computational studies indicate concerted pathway
NTs
Ru
H
2
N
R
R
H
R
1
O
R
2
NTs
Ru
N
R
R
H
O
H
H
R
1
OH
R
2
*
NTs
Ru
HN
R
R
OH
NTs
Ru
N
R
R
H
O
R
2
R
1
H
H
O
NTs
Ru
H
2
N
R
R
Cl
KOH
Ru
Cl
Cl
Cl
Cl
Ru
(S)(S)
R
H
2
N
NHTs
R
HCl
HCl
Samec, J. S. M.; Bäckvall, J.-E.; Andersson, P. G.; Brandt, P. Chem. Soc. Rev., 2006, 35, 237-248.
Ph
Me
O
Ph
(S)
Me
OH
[RuCl
2
(p-cymene)]
2
(1S,2S)-N-(p-toluenesulfonyl)-1,2-
diphenylethylenediamine
i
PrOH, KOH
substrate:catalyst ~200:1
6
Mechanism of ATH
•
Solution phase computational study suggests role of solvent in reduction
Ru
H
O
HN
H
C
O
H
H
1.79 Å
1.32 Å
1.31 Å
1.04 Å
2.51 Å
Ru
H
O
HN
H
C
O
H
H
H
3
C
O H
1.92 Å
1.27 Å
1.34 Å
1.40 Å
1.24 Å
2.02 Å
1.04 Å
Ru
H
O
HN
H
C
O
H
H
H
3
C
O
H
2.06 Å
1.14 Å
1.42 Å
1.02 Å
1.75 Å
1.65 Å
1.11 Å
Ru
H
O
HN
H
C
O
H
H
H
3
C
O
H
H
O
CH
3
1.14 Å
1.42 Å
1.04 Å
1.28 Å
1.27 Å
1.95 Å
1.06 Å
0.00 ps
0.69 ps
0.99 ps
1.08 ps
Handgraaf, J.-W.; Meijer, E. J. J. Am. Chem. Soc. ASAP.
7
Sources of Hydrogen
•
Isopropanol
– Oxidation yields acetone
– Transfer hydrogenation is reversible
– After extended reaction times,
stereoselectivity erodes
•
Formic acid/triethylamine
– Oxidation yields carbon dioxide
– Evolution of carbon dioxide renders
reaction irreversible
– Allows for increase in reaction
concentration
Samec, J. S. M.; Bäckvall, J.-E.; Andersson, P. G.;
Brandt, P. Chem. Soc. Rev., 2006, 35, 237-248.
Koike, T. ;Ikariya, T. Adv. Synth. Catal., 2004, 346, 37-41.
NTs
Ru
H
2
N
R
R
H
R
1
O
R
2
NTs
Ru
N
R
R
H
O
H
H
R
1
OH
R
2
*
NTs
Ru
HN
R
R
OH
NTs
Ru
N
R
R
H
O
R
2
R
1
H
H
O
NTs
Ru
H
2
N
R
R
H
R
1
O
R
2
NTs
Ru
N
R
R
O
O
H
H
R
1
OH
R
2
*
NTs
Ru
HN
R
R
HO
O
H
NTs
Ru
N
R
R
H
O
R
2
R
1
H
H
C
O
O
H
8
Origin of Stereoselectivity
•
Some influence from chiral diamine ligand
•
Significant contribution from arene ligand
– CH-π interaction stabilizes otherwise more-congested transition state
H
Ru
O
N
H
H
R
O
H
H
H
H
H
H
H
H
Ru
O
N
H
H
O
R
H
H
H
H
H
H
H
Addition to Si
face of carbonyl
Addition to Re
face of carbonyl
H
H
Yamakawa, M.; Yamada, I.; Noyori, R. Angew. Chem. Int. Ed., 2001, 40, 2818-2821.
vs.
9
Scope of ATH
•
Mainly aryl-alkyl ketones (alkyl-alkynyl ketones)
– Alkyl group
•
Large functional group tolerance (-Cl, -OH, -CN, -N
2
, -NO
2
, -NHBOC)
•
Not sterically bulky
– Aryl group
•
High oxidation potential prefered
•
o-
Subtituted difficult
•
Electron withdrawing groups erode stereoselectivity
•
Heteroaromatic groups tolerated
Noyori, R.; Hashiguchi, S. Acc. Chem. Res., 1997, 30, 97-102.
Okano, K.; Murata, K.; Ikariya, T. Tetrahedron Lett., 2000, 41, 9277-9280.
Me
O
i
PrOH - 53% yield, 72% ee
HCOOH/NEt
3
- >99% yield, 97% ee
MeO
n = 1
i
PrOH - 45% yield, 91% ee
HCOOH/NEt
3
- >99% yield, 99% ee
n = 2
i
PrOH - 65% yield, 97% ee
HCOOH/NEt
3
- >99% yield, 99% ee
O
n
R
O
R = Me
>99% yield, 98% ee
R = Et
96% yield, 97% ee
R = iPr
41% yield, 83% ee
R = tBu
<1% yield
Me
O
100% yield, 86% ee
O
2
N
Me
O
R = Me
53% yield, 91% ee
R = OMe 24% yield, 89% ee
R
N
Me
O
2-acetylpyridine
99% yield, 91% ee
3-acetylpyridine
99% yield, 89% ee
4-acetylpyridine
99% yield, 92% ee
10
Scope of ATH
•
Diketones and β-keto esters
– 1,2-diketone: alkyl ketone preferential at low temp
– 1,3-diketone: symmetrical Æ anti-diol in high ee; unsymmetrical Æ low ee
– β-Keto ester: ketone reduced over ester
•
Imines
– Protic solvents not tolerated
– Cyclic imines more selective than acyclic (except phosphinylimines)
– More reactive than ketones
Ph
O
Ph
O
Ph
O
Me
O
10 °C
87% yield
92% ee
Ph
O
Me
OH
40 °C
78% yield
95% ee
Ph
OH
Me
OH
anti
:sy n - 98.6:1.4
100% yield, >99% ee
MeO
MeO
N
Me
>99% yield
95% ee
NBn
Me
72% yield
77% ee
N
Me
99% ee
P
Ph
O
Ph
Murata, K.; Okano, K.; Miyagi, M.; Iwane, H.; Noyori, R.; Ikaria, T. Org. Lett., 1999, 1, 1119-1121.
Koike, T.; Murata, K.; Ikariya, T. Org. Lett., 2000, 2, 3833-3836.
Cossy, J.; Eustache, F.; Dalko, P. I. Tetrahedron Lett., 2001, 42, 5005-5007.
Everaere, K.; Morteux, A.; Carpentier, J.-F. Adv. Synth. Catal., 2003, 345, 67-77.
Noyori, R.; Hashiguchi, S. Acc. Chem. Res., 1997, 30, 97-102.
Gladiali, S.; Alberico, E. Chem. Soc. Rev., 35, 226-236.
O
O
O
O
anti
:sy n = 95:5
85% yield
Ph
O
O
Me
ant i
:sy n = 56:42
79% yield
Ph
O
O
OEt
Me
O
O
OtBu
99% yield
94% ee
99% yield
68% ee
11
Outline
• Mechanism and scope of asymmetric transfer hydrogenation
• Pro-atropisomeric phosphine ligands
• Amino acid-based ligands
• Dendrimer-bound diamine ligands
• Asymmetric transfer hydrogenation in water
• Asymmetric transfer hydrogenation in ionic liquids
12
Pro-atropisomeric Phosphine Ligand
•
Noyori received 2001 Nobel Prize for H
2
hydrogenation
•
Utilizes optically pure BINAP ligands
•
BINAP can be resolved into pure (+) and (-) enantiomers due to high barrier
of rotation about the aryl-aryl bond (atropisomeric)
Ph
2
P
P
Ph
2
Ru
N
H
2
H
2
N
Ph
Ph
Cl
Cl
(S)-BINAP/(S,S)-DPEN-Ru(II) Catalyst
Ar
R
O
H
2
Ru catalyst
base
Ar
Me
OH
(R)
PAr
2
PAr
2
(S)-BINAP
Noyori, R.; Asymmetric Catalysis: Science and Opportunities. Nobel Lecture, 8 December 2001.
13
Pro-atropisomeric Phosphine Ligand
•
BIPHEP and DPBP have significantly lower barriers of rotation (tropisomeric
or pro-atropisomeric)
– Optically pure isomers cannot be isolated in solution
– Benzophenone (and derivatives) forms enantiomers in solid state
PAr
2
PAr
2
(S)-BINAP
PAr
2
PAr
2
BIPHEP
O
PAr
2
PAr
2
DPBP
PPh
2
O
PPh
2
Ph
2
P
O
PPh
2
(P)-Conformation
(M)-Conformation
Jing, Q.; Sandoval, C.; Wang, Z.; Ding, K. Eur. J. Org. Chem., 2006, 3606-3616.
14
(From M enantiomer)
Ru
Ph
2
P
N
H
2
Cl
H
N
P
Ph
2
Ph
Ph
O
Pro-atropisomeric Phosphine Ligand
•
Complexing DPBP to metal with diamine ligand forces single diastereomer
of metal complex
Jing, Q.; Sandoval, C.; Wang, Z.; Ding, K. Eur. J. Org. Chem., 2006, 3606-3616.
15
Pro-atropisomeric Phosphine Ligand
•
BINAP not conducive to ATH
•
Pro-atropisomeric DPBP successful for ATH – First pro-atropisomeric
phosphine used in ATH
•
Catalyst for alkyl-alkyl reductions?
Mikami, K.; Wakabayashi, K.; Yusa, Y.; Aikawa, K. Chem. Commun., 2006, 2365-2367.
Noyori, R.; Hashiguchi, S. Acc. Chem. Res., 1997, 30, 97-102.
O
O
O
O
Ligand
= (R)-BINAP
98 % conv. 72 % ee
Ligand
= DPBP
>99 % conv. 99 % ee
Ligand
= (R)-BINAP
61 % conv. 57 % ee
Ligand
= DPBP
99 % conv. 99 % ee
Ligand
= (R)-BINAP
97 % conv. 68 % ee
Ligand
= DPBP
95 % conv. 91 % ee
Ligand
= (R)-BINAP
96 % conv. 71 % ee
Ligand
= DPBP
97 % conv. 89 % ee
R
Me
O
R
Me
OH
Rh-catalyst, ligand, (S,S)-DPEN
KOtBu, iPrOH, rt, 24 h
Rh
Rh-Catalyst
PAr
2
PAr
2
(R)-BINAP
O
PAr
2
PAr
2
DPBP
(S)
(S)
H
2
N
Ph
Ph
H
2
N
+
SbF
6
-
(S,S)-DPEN
Noyori's Catalyst
95% conv. 97% ee
Noyori's Catalyst
53% conv. 91% ee
Noyori's Catalyst
92% conv., 93% ee
NTs
Ru
H
2
N
Ph
Ph
Cl
(R) (R)
Noyori's Catalyst
(R)
16
Outline
• Mechanism and scope of asymmetric transfer hydrogenation
• Pro-atropisomeric phosphine ligands
• Amino acid-based ligands
• Dendrimer-bound diamine ligands
• Asymmetric transfer hydrogenation in water
• Asymmetric transfer hydrogenation in ionic liquids
17
Amino Acid-Based Ligands
•
Initially, amido-oxazoline ligands were targeted
•
Poor yield, stereoselectivity in ATH
•
Noticed synthetic precursor provided better selectivity than target
N
O
O
N
HN
R
1
O
Me
Me
O
HN
R
2
R
1
R
2
N
O
O
N
HN
R
1
O
Me
Me
O
HN
R
2
R
1
R
2
R
1
NHBoc
N
H
O
R
2
OH
Pastor, I. M.; Västilä, P.; Adolfsson, H. Chem. Commun., 2002, 2046-2047.
18
Amino Acid-Based Ligands
•
Boc group & free hydroxyl group crucial
•
Amino acid stereocenter more important than amino alcohol stereocenter
•
1-amino-2-alcohols catalyze ATH with similar yield and ee
Pastor, I. M.; Västilä, P.; Adolfsson, H. Chem. Eur. J., 2003, 9, 4031-4045.
Bøgevig, A.; Pastor, I. M.; Adolfsson, H. Chem. Eur. J., 2004, 10, 294-302.
(S)
Me
OH
(S)
Me
BocHN
N
H
O
(S)
Ph
Me
O
Ru-catalyst, ligand
NaOH, iPrOH
Ru
Cl
Cl
Cl
Cl
Ru-Catalyst
Ru
91% Conversion, 94% ee
OH
(S)
Me
BocHN
N
H
O
(R)
Ph
OH
95% Conversion, 93% ee
19
Amino Acid-Based Ligands
•
Ru(II)(η
6
-arene) complexes known to facilitate peptide formation
•
Provides template to form ligand in situ, form catalyst in situ, and conduct
ATH in one pot
Ru
H
2
N
Cl
O
O
H
2
N
OMe
O
R
2
-HCl
Ru
HN
H
2
N
O
O
R
2
O
OMe
-MeOH
Ru
N
H
2
N
O
O
R
2
O
R
1
R
1
R
1
Ru
Cl
Cl
Cl
Cl
Ru
H
2
N
OH
O
R
1
-HCl
(S)
NHBoc
Me
O
O
NO
2
H
2
N
(S)
Me
OH
1) iPrOH, Δ, 1h
2) iPrONa, Ru-catalyst,
ketone
i
PrOH, rt, 1h
(S)
Me
OH
Ketone (R=)
Conversion (%)
ee
(%)
R
H
85
97
m
-Me
83
97
o
-F
90
92
m
-OMe
86
97
3,5-OMe
82
97
3,4,5-OMe
45
99
Ru
Cl
Cl
Cl
Cl
Ru
Ru-Catalyst
Haas, K.; Beck, W. Eur. J. Inorg. Chem., 2001, 2485-2488.
Västilä, P.; Wettergren, J.; Adolfsson, H. Chem. Commun., 2005, 4039-4041.
20
Amino Acid-Based Ligands
•
Mechanism elusive for several years
•
Key clues:
– Necessity of NH
Boc
, N
H
C(O)R, O
H
groups
– 3 equivalents of base necessary
– Additives
• Strong Lewis acid additives (Sc(OTf)
3
, Ti(OiPr)
4
) have negative effect on reactivity
• NaCl or KCl additive - similar to nonadditive reactions
• LiCl - higher stereoselectivity (also LiBr, LiI, LiClO
4
, LiOAc)
– Replacing NaOiPr with LiOiPr as base (no additive) increased stereoselectivity to
the same extent as LiCl additive
– No additive effect of LiCl with traditional transfer hydrogenation systems
Västilä, P.; Zaitsev, A. B.; Wettergren, J.; Privalov, T.; Adolfsson, H. Chem. Eur. J., 2006, 12, 3218-3225.
R
1
NHBoc
N
H
O
R
2
OH
21
Amino Acid-Based Ligands
•
Proposed mechanism:
•
Lithium ion activates and directs incoming ketone
•
Smaller lithium ion forms tighter transition state
•
Crown ethers erode stereoselectivity
•
CH-π interactions not as important
Ru
N
O
N
H
Me
O
H
O
OtBu
Me
OLi
H
O
Ph
Ph
O
H
LiO
Ru
N
H
N
O
Me
O
H
O
OtBu
Me
Li
H
H
O
Li O
Ru
H
N
N
Me
R
H
O
OtBu
Me
O
Me
Västilä, P.; Zaitsev, A. B.; Wettergren, J.; Privalov, T.; Adolfsson, H. Chem. Eur. J., 2006, 12, 3218-3225.
22
Amino Acid-Based Ligands
•
Previously, other product stereoisomer obtained through un-natural amino acid ligand
•
Modification from amide to thioamide, removal of alcohol reverses stereoselectivity
NHBoc
(S)
OH
O
1) N-methylmorpholine
i
-BuOC(O)Cl, -15 °C, 1h
2)
rt, 3 h, THF
BocHN
(S)
N
O
( S)
H
Lawesson's Reagent
THF, 60 °C, 8h
BocHN
(S)
N
S
( S)
H
97%
77%
H
2
N
(S)
Me
Ph
Me
Ph
Me
Ph
Pastor, I. M.; Västilä, P.; Adolfsson, H. Chem. Eur. J., 2003, 9, 4031-4045.
Zaitsev, A. B.; Adolfsson, H. Org. Lett., 2006, 8, 5129-5132.
Me
O
Ru-catalyst, ligand
NaOH, iPrOH
Me
OH
*
Ru
Cl
Cl
Cl
Cl
Ru
Ru-Catalyst
NH
2
(S)
Me
O
N
H
(R)
Ph
OH
NH
2
(R)
Me
O
N
H
(S)
Ph
OH
Ligand A
Ligand B
Ligand A - 95% yield, 93% ee (S)
Ligand B - 91% yield, 93% ee (R)
23
Amino Acid-Based Ligands
R
2
O
R
1
Rh-catalyst, ligand
LiCl, iPrONa, iPrOH
R
2
OH
R
1
*
Rh
Cl
Cl
Cl
Cl
Rh
NHBoc
(S)
N
H
S
(S)
Ph
NHBoc
(S)
Me
N
H
O
( R)
OH
Ru
Cl
Cl
Cl
Cl
Ru
Ph
Me
O
O
O
Me
O
Me
Me
Me
MeO
Catalyst A: 95% yield, 93% ee, (S)
Catalyst B: 88% yield, 95% ee, (R)
Catalyst A: 91% yield, 95% ee, (S)
Catalyst B: 88% yield, 96% ee, (R)
Catalyst A: 53% yield, 86% ee, (S)
Catalyst B: 61% yield, 97% ee, (R)
Catalyst A: 63% yield, 95% ee, (S)
Catalyst B: 56% yield, 91% ee, (R)
Catalyst A
Catalyst B
Pastor, I. M.; Västilä, P.; Adolfsson, H. Chem. Eur. J., 2003, 9, 4031-4045.
Zaitsev, A. B.; Adolfsson, H. Org. Lett., 2006, 8, 5129-5132.
24
Outline
• Mechanism and scope of asymmetric transfer hydrogenation
• Pro-atropisomeric phosphine ligands
• Amino acid-based ligands
• Dendrimer-bound diamine ligands
• Asymmetric transfer hydrogenation in water
• Asymmetric transfer hydrogenation in ionic liquids
25
Recoverable Diamine Ligands
•
Recoverable systems important with expensive or toxic heavy metal
complexes
•
Immobilization on supporting apparatus can allow for recovery
•
For ATH, two classes of dendrimers initially tested
Chen, Y.-C.; Wu, T.-F.; Deng, J.; Liu, H.; Jiang, Y.-Z.-, Choi, M. C. K.; Chan, A. S. C. Chem. Commun, 2001, 1488-1489.
Chen, Y.-C.; Wu, T.-F.; Deng, J.; Liu, H.; Xin, C.; Zhu, J.; Jiang, Y.-Z.; Choi, M. C. K.; Chan, A. S. C. J. Org. Chem., 2002, 67, 5301-5306
(S)(S)
H
2
N
HN
S
H
N C
O
O
O
O
O
O
O
O
O
n = 3
Ph
O
Me
Ru-catalyst, ligand
HCOOH/NEt
3
, CH
2
Cl
2
Ph
(S)
OH
Me
Run #
t (h) Conversion (%) ee (%)
1
20
98
96.5
2
20
92
96.6
3
25
87
96.8
4
30
85
96.7
5
40
73
96.3
6
40
52
87
Ru
Cl
Cl
Cl
Cl
Ru
Ru-Catalyst
O
R
2
R
1
Ru-catalyst, ligand
HCOOH/NEt
3
, CH
2
Cl
2
(R)
OH
R
2
R
1
R
1
t (h) Conversion (%) ee (%)
o
-Cl
24
> 99
95.5
p
-tBu
55
98
96.3
R
2
H
H
H
CH
2
C(O)Ph
72
70
>99
H
(CH
2
)
4
C(O)Ph
72
67
>99
Ru
Cl
Cl
Cl
Cl
Ru
Ru-Catalyst
O
O
O
O
C
CCH
2
NH
O
HN
O
O
O
O
CCH
2
NH
O
CCH
2
NH
CCH
2
NH
O
N
H
N
H
N
H
S
S
S
HN
O
O
HN
O
O
HN
O
O
(R)
Ph
( R)
Ph
H
2
N
(R)
Ph
(R)
Ph
H
2
N
(R)
Ph
(R)
Ph
H
2
N
O
O
O
O
Ph
Ph
Ph
Ph
26
Recoverable Diamine Ligands
•
Late-stage tunability of ligand/dendrimer compatible with varying nature of
ketone substrates
•
Recovery procedure:
–
Remove CH
2
Cl
2
in vacuo
–
Precipitate dendrimer with MeOH
–
Filter
Liu, W.; Cui, X.; Cun, L.; Zhu, J.; Deng, J. Tetrahedron: Asymmetry, 2005, 16, 2525-2530.
O
O
O
Ph
Ph
NH
2
NH
2
O
O
O
Ph
Ph
n
n
*
*
Ar
SO
2
Cl, (iPr)
2
NEt
CH
2
Cl
2
, 0 °C - rt
O
O
O
Ph
Ph
NH
NH
2
O
O
O
Ph
Ph
n
n
*
*
SO
2
Ar
Ph
O
Me
Ru-catalyst, ligand
HCOOH/NEt
3
, CH
2
Cl
2
, rt
Ph
OH
Me
*
n
Configuration
Ar
time (h)
Conversion (%)
ee
(%)
Configuration
0
4-CH
3
C
6
H
4
(R,R)
20
95
96.8
R
1
4-CH
3
C
6
H
4
(R,R)
20
>99
96.6
R
2
4-CH
3
C
6
H
4
(R,R)
20
97.1
96.1
R
(95.4, 90.2, 83.7, 71.2) (97.5, 97.2, 97.5, 97.0)
3
4-CH
3
C
6
H
4
(R,R)
20
75
94.6
R
2
2,4,6-Et
3
-C
6
H
2
(S,S)
20
93.0
91.7
S
2
2,4,6-iPr
3
-C
6
H
2
(S,S)
20
91.7
92.8
S
2
1-naphthyl
(S,S)
20
>99
96.3
S
Ru
Cl
Cl
Cl
Cl
Ru
Ru-Catalyst
27
Recoverable Diamine Ligands
•
Minimize organic solvent – run ATH in water
– Switch to 1,2-diaminocyclohexane-based ligands and Cp* rhodium catalyst
system
•
Recovery procedure:
– Add hexanes
– Remove organic layer
– Add HCOOH to pH ~7
(R)(R)
H
2
N
S
H
N C
O
O
O
O
O
HN
O
Me
R
Catalyst, ligand
"H
2
"-source Solvent
Catalyst
"H
2
"-source
Solvent
R
Conversion (%)
ee
(%)
(R)
OH
Me
R
Ru
HCOOH/NEt
3
CH
2
Cl
2
H
>99
94
Ru
HCOONa
H
2
O
H
>99
88
Rh
HCOONa
H
2
O
H
>99
96
Rh
HCOONa
H
2
O
p
-OMe
95
94
Rh
HCOONa
H
2
O
o
-OMe
>99
81
(>99, 98, 99, 85, 97) (96, 95, 94, 95, 95, 95)
O
99% Conversion
97% ee
N
Me
O
70% Yield
91% ee
97% Yield
72% ee
94% Yield
52% ee
OEt
O
O
Ph
Me
O
Ru
Cl
Cl
Cl
Cl
Ru
Ru-Catalyst
Rh
Cl
Cl
Cl
Cl
Rh
Rh-Catalyst
BnO
OBn
OBn
BnO
Ligand
Jiang, L.; Wu, T.-F.; Chen, Y.-C.; Zhu, J.; Deng, J. Org. Biomol. Chem., 2006, 4, 3319-3324.
28
Outline
• Mechanism and scope of asymmetric transfer hydrogenation
• Pro-atropisomeric phosphine ligands
• Amino acid-based ligands
• Dendrimer-bound diamine ligands
• Asymmetric transfer hydrogenation in water
• Asymmetric transfer hydrogenation in ionic liquids
29
ATH in Water
• Increases atom economy and environmental friendliness
– Often no organic solvents during reaction
• Allows for ease of product separation, possibility of
catalyst recyclability
– Distillation or extraction
• Vigorously dried solvents and substrates not necessary
30
ATH in Water – Early Work
•
Bujoli group reported phosphonate-substituted diamine ligands with rhodium
metal-catalyzed ATH
•
High conversions (~ 95%), moderate ee (34-60%), cosolvent needed,
catalyst preparation under inert atmosphere
(R)
(R)
NH
NH
Me
Me
(HO)
2
P
(HO)
2
P
O
O
(S)
(S)
NH
NH
Me
Me
(HO)
2
P
(HO)
2
P
O
O
Maillet, C.; Praveen, T.; Janvier, P.; Minguet, S.; Evain, M.; Saluzzo, C.; Tommasion, M. L.; Bujoli, B. J. Org. Chem., 2002, 67, 8191-8196.
Me
O
Rh-catalyst, ligand
t
BuOK, 1:1 H
2
O:iPrOH
(S)
Me
OH
95% yield
46% ee
Rh
Cl
Cl Rh
(R)
(R)
NH
NH
Me
Me
(HO)
2
P
(HO)
2
P
O
O
Rh-Catalyst
Ligand
31
ATH in Water - Advances
•
Deng group developed o-sulfonated ligands with ruthenium catalyst and
HCOONa as hydrogen source
•
Purification difficult
(R)
(R)
NH
2
NH
2
1) 50% SO
3
oleum
0 °C - rt, 22 h
2) BaCO
3
(R)
(R)
NH
2
NH
2
SO
3
-
SO
3
-
Ba
2
+
TsCl, NaOH/SDS
H
2
O/CH
2
Cl
2
, 0 °C - rt, 24 h
then Na
2
SO
4
(R)
(R)
NHTs
NH
2
SO
3
Na
SO
3
Na
C
12
H
25
OSO
3
Na
SDS =
68%
72%
Ma, Y.; Liu, H.; Chen, L.; Cui, X.; Zhu, J.; Deng, J. Org. Lett., 2003,5, 2103-2106.
32
ATH in Water - Advances
•
Recyclability possible – retention of stereoselectivity, loss of conversion
(99% Æ 75%)
•
Surfactant required for satisfactory conversion
Ru
Cl
Cl
Cl
Cl
Ru
O
R
R
Yield (%) ee (%)
p
-Me
94
94
p
-F
88
92
O
n
n
Yield (%) ee (%)
1
66
83
2
21
98
O
R
R Yield (%) ee (%)
87
94
58
84
Br
H
NO
2
Ru-catalyst, ligand
H
2
O, HCO
2
Na, SDS
R
1
R
2
O
R
1
R
2
OH
NHTs
NH
2
(R)
(R)
SO
3
Na
SO
3
Na
Ru-Catalyst
Ligand
C
12
H
25
OSO
3
Na
SDS
(R)
Ma, Y.; Liu, H.; Chen, L.; Cui, X.; Zhu, J.; Deng, J. Org. Lett., 2003,5, 2103-2106.
33
ATH in Water – Recent Work
•
Shift to o-amine ligand and Cp* rhodium catalyst allows for increased yields,
stereoselectivities, and scope over previous work
•
Surfactant no longer necessary
R
1
R
2
O
Rh-catalyst, ligand
HCOONa, H
2
O
R
1
R
2
OH
NHTs
NH
2
(S)
(S)
NH
2
NH
2
Ligand
Rh-catalyst
O
R
2
R
1
R
1
R
2
Yield (%) ee (%)
p
-OMe
H
92
96
o
-OMe
H
90
88
p
-F
H
94
95
p-
Br
H
92
94
H
Br
91
97
p
-NO
2
Br
82
90
O
88% yield
97% ee
S
Me
O
90% yield
98% ee
Rh
Cl
Cl
Cl
Cl
Rh
(S)
Li, L.; Wu, J.; Wang, F.; Liao, J.; Zhang, H.; Lian, C.; Zhu, J.; Deng, J. Green Chem., 2007,9, 23-25.
34
2-Bromo-1-arylethanols
•
Key intermediates in syntheses of β-adrenergic receptor agonists
•
Agonists used as bronchodilators in asthmatics
•
Non-aqueous synthesis by ATH previously hampered
O
Br
(R)
OH
Br
Ru-catalyst, ligand
HCOOH/NEt
3
, 28 °C
Ru
Cl
Cl
Cl
Cl
Ru-Catalyst
Ru
NHTs
NH
2
(R)
(R)
Ligand
O
OCHO
0%
73%
Cross, D. J.; Kenny, J. A.; Houson, I.; Campbell, L.; Walsgrove, T.; Wills, M. Tetrahedron: Asymmetry, 2001, 12, 1801-1806.
35
2-Bromo-1-arylethanols
•
Changing to aqueous system allows for reduction
Ma, Y.; Liu, H.; Chen, L.; Cui, X.; Zhu, J.; Deng, J. Org. Lett., 2003,5, 2103-2106.
Wang, F.; Liu, H.; Cun, L.; Zhu, J.; Deng, J.; Jiang, Y. J. Org. Chem., 2005, 70, 9424-9429.
Li, L.; Wu, J.; Wang, F.; Liao, J.; Zhang, H.; Lian, C.; Zhu, J.; Deng, J. Green Chem., 2007,9, 23-25.
(R)
OH
Br
R
1
R
2
R
3
R
1
R
2
R
3
Yield (%)
ee
(%)
Surfactant
H
H
H
SDS
87
94
H
H
SDS
47
92
OBn
H
H
H
2:1 SDS:CTAB
97
98
H
OMe
H
2:1 SDS:CTAB
80
90
NO
2
OBn
2:1 SDS:CTAB
H
87
93
H
H
H
−
91
97
H
OMe
H
−
70
96
OBn
H
OBn
−
82
95
O
Br
R
1
R
2
R
3
catalyst, ligand
Surfactant, HCOONa, H
2
O
CH
2
Cl
2
cosolvent
Rh
Cl
Cl
Cl
Cl
Rh
NHTs
NH
2
(R)
(R)
R
4
R
4
Ligand
Rh-Catalyst
Catalyst Ligand
Ru
Cl
Cl
Cl
Cl
Ru-Catalyst
C
12
H
25
OSO
3
Na
SDS
Ru
C
16
H
33
N
Me
Me
Me
Br
-
CTAB
A - R
4
= SO
3
Na
B - R
4
= H
C - R
4
= NH
2
Ru
A
Ru
A
Rh
B
Rh
B
Rh
B
Rh
C
Rh
C
Rh
C
36
(R,R)-Formoterol
•
Long-acting, β
2
-agonist
•
Bronchodilator in treatment of patients with asthma and chronic bronchitis
•
(R,R)-enantiomer more active than other 3 possible stereoisomers
Wilkinson, H. S.; Tanoury, G. J.; Wald, S. A.; Senanayake, C. H. Org. Process Res. Dev., 2002, 6, 146-148.
Li, L.; Wu, J.; Wang, F.; Liao, J.; Zhang, H.; Lian, C.; Zhu, J.; Deng, J. Green Chem., 2007,9, 23-25.
O
Br
BnO
BH
3
-diethylaniline,
(R,S)-aminoindanol
THF
(R)
OH
Br
BnO
NO
2
NO
2
O
Br
BnO
Rh-catalyst, ligand
2:1 SDS:CTAB, HCOONa, H
2
O
(R)
OH
Br
BnO
87% yield, 93% ee
2.3 kg, 80% yield, 88% ee
Rh
Cl
Cl
Cl
Cl
Rh
NHTs
NH
2
(R)
(R)
Ligand
Rh-Catalyst
NO
2
NO
2
HO
OH
OMe
Me
H
N
NHCHO
(R,R)-formoterol
37
(R,R)-Formoterol
OH
Br
BnO
MeOH, aq NaOH
98%
BnO
O
OMe
BnHN
Me
1) neat, 90 °C
2) PtO
2
, H
2
3) HCOOH
BnO
OH
OMe
Me
Bn
N
NHCHO
NO
2
NO
2
1) Pd-C, H
2
, EtOH
2)
L
-tartaric acid, iPrOH
85%
HO
OH
OMe
Me
H
N
NHCHO
(R,R)-formoterol
45%, 3 steps
+
Hett, R.; Fang, Q. K.; Gao, Y.; Hong, Y.; Butler, H. T.; Nie, X.; Wald, S. Tetrahedron Lett., 1997, 38, 1125-1128.
38
ATH in Water - Imines
•
Noyori reported ATH of imines not conducive to protic solvents
•
Deng achieved reduction in water with o-sulfonated diamine ligands
– Acyclic imines unsuccessful
•
Recovery procedure
–
Extract (3x) with 1:1 Et
2
O:hexanes
–
Add 1 eq. HCOOH
–
Ready for reuse
MeO
MeO
N
R
R
Yield (%)
ee
(%)
Me
97
95
Et
68
92
i
Pr
90
90
MeO
MeO
S
N
R
Yield (%)
ee
(%)
Me
97
65
t
Bu
95
94
O
O
R
97
94
94
95
96
94
85
94
Recycle
Experiments
MeO
MeO
N
+
R
Bn
R
Yield (%)
ee
(%)
Me
85
90
Ph
94
95
N
R
Ru-catalyst, ligand, CTAB
HCOONa, H
2
O, 28 °C
NH
R
C
16
H
33
N
Me
Me
Me
Br
-
CTAB
NHTs
NH
2
(R)
(R)
SO
3
Na
SO
3
Na
Ru-Catalyst
Ligand
Ru
Cl
Cl
Cl
Cl
Ru
( S)
Wu, J.; Wang, F.; Ma, Y.; Cui, X.; Cun, L.; Zhu, J.; Deng, J.; Yu, B. Chem. Commun., 2006,1766-1768.
39
Outline
• Mechanism and scope of asymmetric transfer hydrogenation
• Pro-atropisomeric phosphine ligands
• Amino acid-based ligands
• Dendrimer-bound diamine ligands
• Asymmetric transfer hydrogenation in water
• Asymmetric transfer hydrogenation in ionic liquids
40
ATH in Ionic Liquids
• Ionic liquid: salt of organic cation with melting point near
ambient temperature
• Can stabilize/immobilize transition metal catalysts
• Negligible vapor pressure
• Tunable miscibility
• Easy recyclability
N
N
Me
BF
4
-
Me
[bmim][BF
4
] =
butylmethylimidazolium tetrafluoroborate
41
ATH in Ionic Liquids
•
Synthesis of ionic liquid-supported precursor
H
2
N
Cl
NHTs
Ph
Ph
Ru
N
N
Me
Me
Cl
N
N
Me
Me
toluene, 110 °C
1)
2) NaBF
4
, CH
2
Cl
2
N
N
BF
4
-
Me
Me
RuCl
3
MeOH, 80 °C
BF
4
-
BF
4
-
Ru
Cl
Cl
Cl
Ru
Cl
N
N
Me
Me
Ph
NHTs
H
2
N
Ph
DMF, rt
N
N
Me
Me
BF
4
-
Geldbach, T. J.; Dyson, P. J. J. Am. Chem. Soc., 2004, 126, 8114-8115.
42
ATH in Ionic Liquids
•
Recovery procedure:
–
Extract – Et
2
O or hexanes
–
Wash – water
–
Dry in vacuo
H
2
N
Cl
NHTs
Ph
Ph
Ru
(R)
(R)
Me
O
catalyst, [bmmim][PF
6
]
HCOOH/NEt
3
, 40 °C, 24 h
(R)
Me
OH
Cycle #
Catalyst A
(% yield,
% ee)
Catalyst B
(% yield,
% ee)
1
>99%, 99% >99%, 99%
2
>99%, 99% >99%, 99%
3
>99%, 99%
80%, 99%
4
99%, 99%
45%, 99%
5
96%, 99%
H
2
N
Cl
NHTs
Ph
Ph
Ru
(R)
(R)
BF
4
-
N
N
Me
Me
Catalyst A
Catalyst B
Cycle #
R =
Conversion (%)
ee
(%)
1
o
-Me
72%
97%
2
p
-Cl
99%
95%
3
H
99%
99%
4
H
98%
99%
1
Acetophenone
99%
97%
2
Tetralone
99%
97%
3
Benzaldehyde
90%
N/A
N
N
Me
Me
n
Bu
PF
6
-
[bmmim][PF
6
]
Geldbach, T. J.; Dyson, P. J. J. Am. Chem. Soc., 2004, 126, 8114-8115.
43
ATH in Ionic Liquids
•
Library of ionic liquids screened
– Hydrophilic ILs inhibit reaction
– Hydrophobic ILs slow reaction, but good ee
Joerger, J.-M.; Paris, J.-M.; Vaultier, M. Arkivoc, 2006, 152-160.
Me
O
Ionic
Liquid
Cycle #
Time (h) Conversion (%)
ee
(%)
[bmim][PF
6
]
1
31
97
96
2
50
92
95
3
95
46
89
[bmim][BF
4
]
40
<1
-
[bmim][MeSO
4
]
48
19
85
[emim][OTf]
24
0
-
Hydrophilic
Ionic Liquids
[bmim][NTf
2
]
1
27
98
96
2
21
58
96
[tmba][NTf
2
]
1
26
98
97
2
41
99
97
3
94
99
97
4
50
56
96
Hydrophobic
Ionic Liquids
(S)
Me
OH
catalyst, ionic liquid
HCOOH/NEt
3
N
N
Me
n
Bu
BF
4
-
[bmim][BF
4
]
N
N
Me
Et
[emim][OTf]
-
O
CF
3
S
O
O
N
+
Me
Me
Me
n
Bu
N
-
CF
3
S
O
O
F
3
C
S
O
O
[tmba][NTf
2
]
H
2
N
Cl
NHTs
Ph
Ph
Ru
(S)
(S)
Catalyst
44
Conclusions
• Role of solvent in transition state may be significant
• Pro-atropisomeric phosphine ligands can impart
stereocontrol
• Ligands based on naturally-occurring amino acids
suitable for ATH
• Catalyst can be recovered and reused
• ATH can be run in water or ionic liquid
• Future directions:
– Increase substrate:catalyst ratio
– Expand scope
– Improve recoverability further
45
Acknowledgments
Acknowledgments
•
Professor Crimmins
•
Crimmins Group Members
•
UNC Chemistry