TDA7850 STMicroelectronics elenota pl

background image

November 2008

Rev 5

1/18

1

TDA7850

4 x 50 W MOSFET quad bridge power amplifier

Features

High output power capability:

– 4 x 50 W/4

Ω max.

– 4 x 30 W/4

Ω @ 14.4 V, 1 kHz, 10 %

– 4 x 80 W/2

Ω max.

– 4 x 55 W/2

Ω @ 14.4V, 1 kHz, 10 %

MOSFET output power stage

Excellent 2

Ω driving capability

Hi-Fi class distortion

Low output noise

ST-BY function

Mute function

Automute at min. supply voltage detection

Low external component count:

– Internally fixed gain (26 dB)

– No external compensation

– No bootstrap capacitors

On board 0.35 A high side driver

Protections:

Output short circuit to gnd, to V

s

, across the

load

Very inductive loads

Overrating chip temperature with soft thermal
limiter

Output DC offset detection

Load dump voltage

Fortuitous open gnd

Reversed battery

ESD

Description

The TDA7850 is a breakthrough MOSFET
technology class AB audio power amplifier in
Flexiwatt 25 package designed for high power car
radio. The fully complementary P-Channel/N-
Channel output structure allows a rail to rail
output voltage swing which, combined with high
output current and minimized saturation losses
sets new power references in the car-radio field,
with unparalleled distortion performances.

The TDA7850 integrates a DC offset detector.

Flexiwatt25

(Vertical)

Flexiwatt25

(Horizontal)

Table 1.

Device summary

Order code

Package

Packing

TDA7850

Flexiwatt25 (Vertical)

Tube

TDA7850H

Flexiwatt25 (Horizontal

Tube

www.st.com

background image

Contents

TDA7850

2/18

Contents

1

Block diagram and application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1

Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2

Standard test and application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2

Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3

Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1

Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2

Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4

Electrical characteristic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4

Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1

SVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2

Input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3

Standby and muting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.4

DC offset detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.5

Heatsink definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5

Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

background image

TDA7850

List of tables

3/18

List of tables

Table 1.

Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Table 2.

Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Table 3.

Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Table 4.

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Table 5.

Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

background image

List of figures

TDA7850

4/18

List of figures

Figure 1.

Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.

Standard test and application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 3.

Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 4.

Components and top copper layer of the

Figure 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 5.

Bottom copper layer

Figure 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 6.

Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 7.

Output power vs. supply voltage (R

L

= 4

Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 8.

Output power vs. supply voltage (R

L

= 2

Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 9.

Distortion vs. output power (R

L

= 4

Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 10.

Distortion vs. output power (R

L

= 2

Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 11.

Distortion vs. frequency (R

L

= 4

Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 12.

Distortion vs. frequency (R

L

= 2

Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 13.

Crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 14.

Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 15.

Output attenuation vs. supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 16.

Power dissipation and efficiency vs. output power (R

L

= 4

Ω, SINE) . . . . . . . . . . . . . . . . . 12

Figure 17.

Power dissipation and efficiency vs. output power (R

L

= 2

Ω, SINE) . . . . . . . . . . . . . . . . . 12

Figure 18.

Power dissipation vs. output power (R

L

= 4

Ω, audio program simulation) . . . . . . . . . . . . . 13

Figure 19.

Power dissipation vs. output power (R

L

= 2

Ω, audio program simulation) . . . . . . . . . . . . . 13

Figure 20.

ITU R-ARM frequency response, weighting filter for transient pop. . . . . . . . . . . . . . . . . . . 13

Figure 21.

Flexiwatt25 (vertical) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . 15

Figure 22.

Flexiwatt25 (horizontal) mechanical data and package dimensions. . . . . . . . . . . . . . . . . . 16

background image

TDA7850

Block diagram and application circuit

5/18

1

Block diagram and application circuit

1.1 Block

diagram

Figure 1.

Block diagram

1.2

Standard test and application circuit

Figure 2.

Standard test and application circuit

IN1

0.1

μF

MUTE

ST-BY

IN2

0.1

μF

OUT1+

OUT1-

OUT2+

OUT2-

PW-GND

IN3

0.1

μF

IN4

0.1

μF

OUT3+

OUT3-

OUT4+

OUT4-

PW-GND

PW-GND

PW-GND

D94AU158D

AC-GND

0.47

μF

47

μF

SVR

TAB

S-GND

Vcc1

Vcc2

100nF

470

μF

HSD/V

OFF_DET

HSD

IN1

0.1

μF

C9

1

μF

IN2

C2 0.1

μF

OUT1

OUT2

IN3

C3 0.1

μF

IN4

C4 0.1

μF

OUT3

OUT4

D95AU335C

C5

0.47

μF

C6

47

μF

SVR

TAB

Vcc1-2

Vcc3-4

C8

0.1

μF

C7

2200

μF

C10

1

μF

ST-BY

R1

10K

R3

*)

R2

47K

MUTE

C1

14

15

12

11

22

4

13

S-GND

16

10

25

1

HSD/OD

6

20

9

8

7

5

2

3

17

18

19

21

24

23

*) R3 = 10k

Ω to be placed when pin 25 is used as offset detector.

background image

Pin description

TDA7850

6/18

2 Pin

description

Figure 3.

Pin connection (top view)

D94AU159A

TAB

P-GND2

OUT2-

ST-BY

OUT2+

V

CC

OUT1-

P-GND1

OUT1+

SVR

IN1

IN2

S-GND

IN4

IN3

AC-GND

OUT3+

P-GND3

OUT3-

V

CC

OUT4+

MUTE

OUT4-

P-GND4

HSD

1

25

D06AU1655

TAB

P-GND2

OUT2-

ST-BY

OUT2+

V

CC

OUT1-

P-GND1

OUT1+

SVR

IN1

IN2

S-GND

IN4

IN3

AC-GND

OUT3+

P-GND3

OUT3-

V

CC

OUT4+

MUTE

OUT4-

P-GND4

HSD

1

25

Vertical

Horizontal

background image

TDA7850

Electrical specifications

7/18

3 Electrical

specifications

3.1

Absolute maximum ratings

3.2 Thermal

data

Table 2.

Absolute maximum ratings

Symbol

Parameter

Value

Unit

V

S

Operating supply voltage

18

V

V

S (DC)

DC supply voltage

28

V

V

S (pk)

Peak supply voltage (for t = 50 ms)

50

V

I

O

Output peak current
repetitive (duty cycle 10 % at f = 10 Hz)
non repetitive (t = 100

μs)

9

10

A

A

P

tot

Power dissipation T

case

= 70 °C

80

W

T

j

Junction temperature

150

°C

T

stg

Storage temperature

-55 to 150

°C

Table 3.

Thermal data

Symbol

Parameter

Value

Unit

R

th j-case

Thermal resistance junction to case

Max.

1

°C/W

background image

Electrical specifications

TDA7850

8/18

3.3 Electrical

characteristics

Table 4.

Electrical characteristics

(Refer to the test and application diagram, V

S

= 14.4 V; R

L

= 4

Ω; R

g

= 600

Ω; f = 1 kHz;

T

amb

= 25 °C; unless otherwise specified).

Symbol

Parameter

Test condition

Min.

Typ.

Max.

Unit

I

q1

Quiescent current

R

L

=

100

180

280

mA

V

OS

Output offset voltage

Play mode / Mute mode

±50

mV

dV

OS

During mute ON/OFF output
offset voltage

ITU R-ARM weighted

see

Figure 20

-10

+10

mV

During Standby ON/OFF output
offset voltage

-10

+10

mV

G

v

Voltage gain

25

26

27

dB

dG

v

Channel gain unbalance

±1

dB

P

o

Output

power

V

S

= 13.2 V; THD = 10 %

V

S

= 13.2 V; THD = 1 %

V

S

= 14.4 V; THD = 10 %

V

S

= 14.4 V; THD = 1 %

23

16

28

20

25

19

30

23

W

V

S

= 14.4 V; THD = 10 %, 2

Ω

50

55

W

P

o max.

Max. output power

(1)

V

S

= 14.4 V; R

L

= 4

Ω

V

S

= 14.4 V; R

L

= 2

Ω

50

85

W

THD

Distortion

P

o

= 4W

P

o

= 15W; R

L

= 2

Ω

0.006

0.015

0.02

0.03

%

e

No

Output

noise

"A" Weighted

Bw = 20 Hz to 20 kHz

35

50

50

70

μV

SVR

Supply voltage rejection

f = 100 Hz; V

r

= 1Vrms

50

75

dB

f

ch

High cut-off frequency

P

O

= 0.5 W

100

300

KHz

R

i

Input impedance

80

100

120

K

Ω

C

T

Cross talk

f = 1 kHz P

O

= 4 W

f = 10 kHz P

O

= 4 W

60

70

60

-

-

dB

I

SB

Standby current consumption

V

ST-BY

= 1.5 V

20

μA

V

ST-BY

= 0 V

10

I

pin5

ST-BY pin current

V

ST-BY

= 1.5 V to 3.5 V

±1

μA

V

SB out

Standby out threshold voltage

(Amp: ON)

2.75

V

V

SB in

Standby in threshold voltage

(Amp: OFF)

1.5

V

A

M

Mute attenuation

P

Oref

= 4 W

80

90

dB

V

M out

Mute out threshold voltage

(Amp: Play)

3.5

V

V

M in

Mute in threshold voltage

(Amp: Mute)

1.5

V

background image

TDA7850

Electrical specifications

9/18

V

AM in

V

S

automute threshold

(Amp: Mute)

Att

80 dB; P

Oref

= 4 W

(Amp: Play)

Att < 0.1 dB; P

O

= 0. 5W

6.5

7

7.5

8

V

I

pin23

Muting pin current

V

MUTE

= 1.5 V

(Sourced Current)

7

12

18

μA

V

MUTE

= 3.5 V

-5

18

μA

HSD section

V

dropout

Dropout voltage

I

O

= 0.35 A; V

S

= 9 to 16 V

0.25

0.6

V

I

prot

Current limits

400

800

mA

Offset detector (Pin 25)

V

M_ON

Mute voltage for DC offset
detection enabled

V

ST-BY

= 5 V

8

V

V

M_OFF

6

V

V

OFF

Detected differential output offset V

ST-BY

= 5 V; V

mute

= 8 V

±2

±3

±4

V

V

25_T

Pin 25 voltage for detection =
TRUE

V

ST-BY

= 5 V; V

mute

= 8 V

V

OFF

> ±4 V

0

1.5

V

V

25_F

Pin 25 Voltage for detection =
FALSE

V

ST-BY

= 5 V; V

mute

= 8 V

V

OFF

> ±2 V

12

V

1.

Saturated square wave output.

Table 4.

Electrical characteristics (continued)

(Refer to the test and application diagram, V

S

= 14.4 V; R

L

= 4

Ω; R

g

= 600

Ω; f = 1 kHz;

T

amb

= 25 °C; unless otherwise specified).

Symbol

Parameter

Test condition

Min.

Typ.

Max.

Unit

background image

Electrical specifications

TDA7850

10/18

Figure 4.

Components and top copper layer of the

Figure 2

.

Figure 5.

Bottom copper layer

Figure 2

.

background image

TDA7850

Electrical specifications

11/18

3.4

Electrical characteristic curves

Figure 6.

Quiescent current vs. supply
voltage

Figure 7.

Output power vs. supply voltage
(R

L

= 4

Ω)

Figure 8.

Output power vs. supply voltage
(R

L

= 2

Ω)

Figure 9.

Distortion vs. output power
(R

L

= 4

Ω)

Figure 10.

Distortion vs. output power
(R

L

= 2

Ω)

Figure 11.

Distortion vs. frequency
(R

L

= 4

Ω)

AC00064

Vs (V)

100

110

120

130

140

150

160

170

180

190

200

8

10

12

14

16

18

Vi = 0
RL =

Id (mA)

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

8

9

10

11

12

13

14

15

16

17

18

P

o

(W)

V

s

(V)

R

L

= 4

Ω

f = 1 KHz

Po-max

THD= 10%

THD= 1%

AC00064

AC00066

0

10

20

30

40

50

60

70

80

90

100

110

120

130

8

9

10

11

12

13

14

15

16

17

18

Vs (V)

Po (W)

Po-max

THD=10%

THD=1%

R

L

= 2

Ω

f = 1 KHz

AC00067

0.001

0.01

0.1

1

10

0.1

1

10

100

P

o

(W)

THD (%)

V

S

= 14.4 V

R

L

= 4

Ω

f = 1 KHz

f = 10 KHz

AC00068

0.001

0.01

0.1

1

10

0.1

1

10

100

Po (W)

THD (%)

V

S

= 14.4 V

RL = 2Ω

f = 10 KHz

f = 1 KHz

AC00069

0.001

0.01

0.1

1

10

10

100

1000

10000

100000

f (Hz)

THD (%)

V

S

= 14.4 V

R

L

= 4

Ω

P

o

= 4 W

background image

Electrical specifications

TDA7850

12/18

Figure 12.

Distortion vs. frequency
(R

L

= 2

Ω)

Figure 13.

Crosstalk vs. frequency

Figure 14.

Supply voltage rejection vs.
frequency

Figure 15.

Output attenuation vs. supply
voltage

Figure 16.

Power dissipation and efficiency
vs. output power (R

L

= 4

Ω, SINE)

Figure 17.

Power dissipation and efficiency
vs. output power (R

L

= 2

Ω, SINE)

AC00070

0.001

0.01

0.1

1

10

10

100

1000

10000

100000

f (Hz)

THD (%)

V

S

= 14.4 V

R

L

= 2

Ω

P

o

= 8 W

-100

-90

-80

-70

-60

-50

-40

-30

-20

10

100

1000

10000

100000

R

L

= 4

Ω

P

o

= 4 W

R

g

= 600

Ω

f (Hz)

CROSSTALK (dB)

AC00071

AC00072

-100

-90

-80

-70

-60

-50

-40

-30

-20

10

100

1000

10000

100000

f (Hz)

SVR (dB)

Rg = 600Ω
Vripple = 1 Vrms

AC00073

-100

-80

-60

-40

-20

0

5

6

7

8

9

10

Vs (V)

OUTPUT ATTN (dB)

R

L

= 4

Ω

P

o

= 4 W ref

AC00074

0

10

20

30

40

50

60

70

80

90

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

P

tot

(W)

η (%)

P

o

(W)

0

10

20

30

40

50

60

70

80

90

P

tot

η

V

S

= 14.4 V

R

L

= 4 x 4

Ω

f = 1 KHz SINE

AC00075

0

20

40

60

80

100

120

140

160

180

0

5

10

15

20

25

30

35

40

45

50

55

0

10

20

30

40

50

60

70

80

90

Ptot (W)

η (%)

P

o

(W)

P

tot

η

V

S

= 14.4 V

R

L

= 4 x 2

Ω

f = 1 KHz SINE

background image

TDA7850

Electrical specifications

13/18

Figure 18.

Power dissipation vs. output power
(R

L

= 4

Ω, audio program simulation)

Figure 19.

Power dissipation vs. output power
(R

L

= 2

Ω, audio program simulation)

Figure 20.

ITU R-ARM frequency response,
weighting filter for transient pop

AC00076

5

10

15

20

25

30

0

1

2

3

4

5

6

V

S

= 13.2 V

R

L

= 4 x 4

Ω

GAUSSIAN NOISE

CLIP START

P

tot

(W)

P

o

(W)

AC00077

5

10

15

20

25

30

35

40

45

50

55

60

0

2

4

6

8

10

V

S

= 13.2 V

R

L

= 4 x 2

Ω

GAUSSIAN NOISE

CLIP START

P

tot

(W)

P

o

(W)

Output attenuation (dB)

-50

-40

-30

-20

-10

0

10

10

100

1000

10000

100000

Hz

AC00343

background image

Application hints

TDA7850

14/18

4 Application

hints

Referred to the circuit of

Figure 2

.

4.1 SVR

Besides its contribution to the ripple rejection, the SVR capacitor governs the turn ON/OFF
time sequence and, consequently, plays an essential role in the pop optimization during
ON/OFF transients. To conveniently serve both needs, Its minimum recommended value
is 10µF
.

4.2 Input

stage

The TDA7850's inputs are ground-compatible and can stand very high input signals (±
8Vpk) without any performance degradation.
If the standard value for the input capacitors (0.1µF) is adopted, the low frequency cut-off
will amount to 16 Hz.

4.3 Standby

and

muting

Standby and Muting facilities are both CMOS compatible. In absence of true CMOS ports or
microprocessors, a direct connection to Vs of these two pins is admissible but a 470k

Ω

equivalent resistance should be present between the power supply and the muting and
ST-BY pins.
R-C cells have always to be used in order to smooth down the transitions for preventing any
audible transient noises.
About the standby, the time constant to be assigned in order to obtain a virtually pop-free
transition has to be slower than 2.5 V/ms.

4.4 DC

offset

detector

The TDA7850 integrates a DC offset detector to avoid that an anomalous DC offset on the
inputs of the amplifier may be multiplied by the gain and result in a dangerous large offset on
the outputs which may lead to speakers damage for overheating. The feature is enabled by
the MUTE pin (according to table 3) and works with the amplifier unmuted and with no signal
on the inputs.
The DC offset detection is signaled out on the HSD pin. To ensure the correct functionality of
the Offset Detector it is necessary to connect a pulldown 10 kW resistor between HSD and
ground.

4.5 Heatsink

definition

Under normal usage (4 Ohm speakers) the heatsink's thermal requirements have to be
deduced from

Figure 18

, which reports the simulated power dissipation when real

music/speech programmes are played out. Noise with gaussian-distributed amplitude was
employed for this simulation. Based on that, frequent clipping occurrence (worst-case) will
cause P

diss

= 26 W. Assuming T

amb

= 70 °C and T

CHIP

= 150 °C as boundary conditions, the

heatsink's thermal resistance should be approximately 2°C/W. This would avoid any thermal
shutdown occurrence even after long-term and full-volume operation.

background image

TDA7850

Package information

15/18

5 Package

information

In order to meet environmental requirements, ST (also) offers these devices in ECOPACK

®

packages. ECOPACK

®

packages are lead-free. The category of second Level Interconnect

is marked on the package and on the inner box label, in compliance with JEDEC Standard
JESD97. The maximum ratings related to soldering conditions are also marked on the inner
box label.

ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Figure 21.

Flexiwatt25 (vertical) mechanical data and package dimensions

OUTLINE AND

MECHANICAL DATA

DIM.

mm

inch

MIN.

TYP.

MAX.

MIN.

TYP.

MAX.

A

4.45

4.50

4.65

0.175

0.177

0.183

B

1.80

1.90

2.00

0.070

0.074

0.079

C

1.40

0.055

D

0.75

0.90

1.05

0.029

0.035

0.041

E

0.37

0.39

0.42

0.014

0.015

0.016

F (1)

0.57

0.022

G

0.80

1.00

1.20

0.031

0.040

0.047

G1

23.75

24.00

24.25

0.935

0.945

0.955

H (2)

28.90

29.23

29.30

1.139

1.150

1.153

H1

17.00

0.669

H2

12.80

0.503

H3

0.80

0.031

L (2)

22.07

22.47

22.87

0.869

0.884

0.904

L1

18.57

18.97

19.37

0.731

0.747

0.762

L2 (2)

15.50

15.70

15.90

0.610

0.618

0.626

L3

7.70

7.85

7.95

0.303

0.309

0.313

L4

5

0.197

L5

3.5

0.138

M

3.70

4.00

4.30

0.145

0.157

0.169

M1

3.60

4.00

4.40

0.142

0.157

0.173

N

2.20

0.086

O

2

0.079

R

1.70

0.067

R1

0.5

0.02

R2

0.3

0.12

R3

1.25

0.049

R4

0.50

0.019

V1

3˚ (Typ.)

V

5˚ (T p.)

V2

20˚ (Typ.)

V3

45˚ (Typ.)

(2): molding protusion included

(1): dam-bar protusion not included

Flexiwatt25 (vertical)

H3

R4

G

V

G1

L2

H1

H

F

M1

L

FLEX25ME

V3

O

L3

L4

H2

R3

N

V2

R

R2

R2

C

B

L1

M

R1

L5

R1

R1

E

D

A

Pin 1

V

V1

V1

7034862

background image

Package information

TDA7850

16/18

Figure 22.

Flexiwatt25 (horizontal) mechanical data and package dimensions

OUTLINE AND

MECHANICAL DATA

DIM.

mm

inch

MIN.

TYP.

MAX.

MIN.

TYP.

MAX.

A

4.45

4.50

4.65

0.175

0.177

0.183

B

1.80

1.90

2.00

0.070

0.074

0.079

C

1.40

0.055

D

2.00

0.079

E

0.37

0.39

0.42

0.014

0.015

0.016

F (1)

0.57

0.022

G

0.75

1.00

1.25

0.029

0.040

0.049

G1

23.70

24.00

24.30

0.933

0.945

0.957

H (2)

28.90

29.23

29.30

1.139

1.150

1.153

H1

17.00

0.669

H2

12.80

0.503

H3

0.80

0.031

L (2)

21.64

22.04

22.44

0.852

0.868

0.883

L1

10.15

10.5

10.85

0.40

0.413

0.427

L2 (2)

15.50

15.70

15.90

0.610

0.618

0.626

L3

7.70

7.85

7.95

0.303

0.309

0.313

L4

5

0.197

L5

5.15

5.45

5.85

0.203

0.214

0.23

L6

1.80

1.95

2.10

0.070

0.077

0.083

M

2.75

3.00

3.50

0.108

0.118

0.138

M1

4.73

0.186

M2

5.61

0.220

N

2.20

0.086

P

3.20

3.50

3.80

0.126

0.138

0.15

R

1.70

0.067

R1

0.50

0.02

R2

0.30

0.12

R3

1.25

0.049

R4

0.50

0.02

V

5˚ (Typ.)

V1

3˚ (Typ.)

V2

20˚ (Typ.)

V3

45˚ (Typ.)

Flexiwatt25
(Horizontal)

7399733 A

(1): dam-bar protusion not included; (2): molding protusion included

background image

TDA7850

Revision history

17/18

6 Revision

history

Table 5.

Document revision history

Date

Revision

Changes

22-Nov-2006

1

Initial release.

27-Feb-2007

2

Added

Chapter 3.4: Electrical characteristic curves

.

09-Oct-2007

3

Updated the values for the dV

OS

and I

q1

parameters on the

Table 4

.

Added

Figure 20 on page 13

.

12-Sep-2008

4

Updated

Figure 2: Standard test and application circuit

.

Updated

Section 4.4: DC offset detector

and

Section 4.3: Standby

and muting

.

Updated the values of V

OS

and THD parameters on the

Table 4

.

07-Nov-2008

5

Modified max. values of the THD distortion in

Table 4: Electrical

characteristics on page 8

.

background image

TDA7850

18/18

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -

Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com


Document Outline


Wyszukiwarka

Podobne podstrony:
TDA7851A STMicroelectronics elenota pl
TDA7388 STMicroelectronics elenota pl
TDA7383 STMicroelectronics elenota pl
TDA7566 STMicroelectronics elenota pl
TDA7266M STMicroelectronics elenota pl
TDA7490LSA STMicroelectronics elenota pl
TDA1908 STMicroelectronics elenota pl (1)
TDA7233 STMicroelectronics elenota pl
TDA7231A STMicroelectronics elenota pl
TDA7360 STMicroelectronics elenota pl
TDA7386 STMicroelectronics elenota pl (2)
TDA7385 STMicroelectronics elenota pl
TDA7490SA STMicroelectronics elenota pl
TDA7370B STMicroelectronics elenota pl
TDA2007A STMicroelectronics elenota pl
TDA7266S STMicroelectronics elenota pl
TDA7266D STMicroelectronics elenota pl
TDA7497S STMicroelectronics elenota pl

więcej podobnych podstron