budowa i dzialanie FDD

background image

Urządzenia techniki komputerowej.

1

______________________________________________________________________










URZĄDZENIA TECHNIKI

KOMPUTEROWEJ


Budowa i zasada działania FDD










background image

2

Urządzenia techniki komputerowej.

______________________________________________________________________

______________________________________________________________________


I.

Zasada zapisu informacji na nośnikach

magnetycznych


Zasada zapisu informacji na nośnikach magnetycznych stosowanych w dyskietkach

i dyskach twardych jest zbliżona do zapisu stosowanego w magnetofonach.
Wykorzystywane jest tu zjawisko powstawania pola magnetycznego wokół przewodnika,
przez który płynie prąd oraz właściwości pewnych materiałów zwanych materiałami
magnetycznie twardymi. Materiały te pod wpływem pola magnetycznego ulegają trwałemu
namagnesowaniu, i „zapamiętują” pole magnetyczne. Układ nanoszący pole magnetyczne
na nośnik magnetyczny (czyli głowica zapisująca) jest schematycznie przedstawiony na
rysunku 1.

Rysunek 1. Zasada zapisu na nośniku magnetycznym


Magnetowód wykonany z materiału magnetycznie miękkiego prowadzi w swoim

wnętrzu linie sił pola magnetycznego wytworzone przez przewodnik, przez który płynie
prąd. Szczelina w magnetowodzie powoduje powstanie „bąbelka” linii sił pola
magnetycznego, które wnika w znajdujący się pod spodem nośnik magnetyczny (materiał
magnetycznie twardy), powodując jego stałe namagnesowanie (zaznaczone w przykładzie
jako NS). Zmiana kierunku prądu (zwanego prądem magnesującym) w przewodniku
powoduje magnesowanie nośnika w kierunku przeciwnym - SN.


Zjawisko wykorzystywane przy odczycie to powstawanie siły elektromotorycznej w

przewodniku znajdującym się w zmiennym polu magnetycznym. Działanie układu
odczytującego, czyli głowicy odczytującej zilustrowane jest na rysunku 2.

background image

Urządzenia techniki komputerowej.

3

______________________________________________________________________

Rysunek 2. Zasada odczytu informacji z nośnika magnetycznego

Nośnik przesuwający się pod głowicą został namagnesowany prądem zmieniającym

kierunek tak, jak to opisaliśmy w poprzednim przykładzie. W momencie zmiany kierunku
prądu także pole magnetyczne zmieniało kierunek, pomiędzy zmianami pozostając bez
zmian. Jeżeli pod głowicą przesuwa się fragment nośnika, na którym nastąpiła zmiana pola,
przewodnik nawinięty na magnetowodzie znajduje się w zmiennym polu magnetycznym,
co powoduje wyindukowanie w nim impulsu prądu. Impulsy te wytwarzane są przy każdej
zmianie pola, przy czym kierunek impulsów zależy od kierunku zmian pola.


W głowicach zapisujących dla dysków twardych i dyskietek kształt przebiegu prądu

jest właśnie taki, jak opisano w przykładzie. Stąd w głowicy odczytującej indukują się
impulsy prądu (w momentach zmian pola) o zmiennej polaryzacji (dodatnie i ujemne). Za
pomocą prostych układów elektronicznych można te impulsy wyprostować, czyli zamienić
je na impulsy o jednakowej polaryzacji (na przykład dodatnie).










background image

4

Urządzenia techniki komputerowej.

______________________________________________________________________

______________________________________________________________________

II.

Dyski elastyczne i ich interfejs


Dyski elastyczne zwane są także dyskietkami i takiego właśnie określenia będę

najczęściej używać. Napędem dysków elastycznych lub stacją dysków (dyskietek),
oznaczoną w skrócie jako FDD (ang. Floppy Disk Drive), nazywa się urządzenie
zawierające część mechaniczną oraz układy elektroniczne niezbędne do sterowania pracą
mechanizmów i realizacji operacji odczytu i zapisu. Stacja dyskietek współpracuje z
układem wejścia/wyjścia (będącym jej interfejsem) zwanym sterownikiem napędu dysków
elastycznych, oznaczanym skrótem FDC (ang. Floppy Disc Controller). Kolejne
podrozdziały przedstawiają budowę I działanie FDD I FDC.


Budowa mechaniczna napędu dysku elastycznego

Podstawowe części mechaniczno-elektryczne tworzące napęd dysku elastycznego

przedstawione są na rysunku 3. Napęd zawiera dwa silniki. Pierwszy z nich napędza krążek
pokryty ferromagnetykiem, będący nośnikiem informacji. Szybkość obrotowa tego silnika
dla dyskietek 3,5” wynosi 360 obr/min (300 dla dyskietek 360 KB 5,25”). Drugi z silników,
zwany silnikiem krokowym, zapewnia liniowy ruch głowicy zapisująco-odczytującej,
przesuwającej się drobnymi skokami wzdłuż promienia krążka magnetycznego (od tych
drobnych skoków pochodzi jego nazwa). Zadaniem tego silnika jest precyzyjne ustawienie
głowicy nad określonym obszarem krążka. Informacja jest zapisywana (a więc i
odczytywana) na dyskietce w postaci koncentrycznych okręgów zwanych ścieżkami (ang.
track), gdyż w trakcie zapisu jednej ścieżki głowica pozostaje nieruchoma. Po zapełnieniu
całej ścieżki, głowicę należy przesunąć o pewien odcinek i zacząć zapisywać na następnej
ś

cieżce. Najbardziej zewnętrzną ścieżkę nazywamy ścieżką zerową (ang. track zero).

Ponieważ pełni ona pewne wyróżnione role, istnieje w napędzie czujnik sygnalizujący
ustawienie głowicy nad ścieżką zerową. Między innymi właśnie z tego miejsca rozpoczyna
pracę głowica po uruchomieniu napędu.


Innym czujnikiem występującym w mechanizmie napędu dyskietki jest czujnik

blokady zapisu. Blokada ta jest blokadą sprzętową i (na szczęście) nie da jej się w żaden
sposób programowo ominąć. Stąd nad tak zabezpieczoną dyskietkę nie mogą się przedostać
wirusy komputerowe (co innego z wirusami grypy).


Ostatnim czujnikiem, nie pokazanym na rysunku 3, jest czujnik pierwszego sektora

ś

cieżki. Sygnalizuje on, aczkolwiek w sposób niezbyt precyzyjny, zbliżanie się do głowicy

pierwszego sektora ścieżki.

background image

Urządzenia techniki komputerowej.

5

______________________________________________________________________

Rysunek 3. Budowa mechaniczna napędu dysku elastycznego



























ERRATA:

Zamiast „Silnik korkowy” powinno by

ć

„silnik krokowy”

background image

6

Urządzenia techniki komputerowej.

______________________________________________________________________

______________________________________________________________________


Interfejs dysków elastycznych


Interfejs dysków elastycznych składa się z kontrolera napędu dyskowego FDC oraz

okablowania w postaci tak zwanego pasma łączącego FCD z FDD. Interfejs ten został
opracowany przez firmę Shugart Associates i następnie zakupiony na własność przez firmę
IBM. Nosi on oznaczenie S.A.-450. Schemat blokowy FDC wraz z dołączonymi napędami
dyskowymi pokazany jest na rysunku 4.

Rysunek 4. Schemat blokowy FDC standardu S.A.-450


Zadaniem tego interfejsu jest przesyłanie pomiędzy FDC i FDD danych

zapisywanych i odczytywanych (szeregowo) oraz dostarczenie wszystkich sygnałów
sterujących niezbędnych do działania FDD (pełny zestaw sygnałów pomiędzy FDC i FDD
przedstawiony jest na rysunku 5). Sygnały te wytwarzane są przy współpracy
mikroprocesora zawartego w FDC współpracujące ze specjalizowanym układem scalonym
oznaczonym na schemacie jako sterownik. Układy logiczne CRC dostarczają dodatkowych
danych służących do kontroli poprawności odczytywanej informacji (w stosunku do
zapisu). Separator danych rozdziela danych rozdziela odczytane impulsy na impulsy danych
i impulsy synchronizujące. Interfejs magistrali zapewnia równoległą komunikację z
systemem.


Interfejs S.A.-450 umożliwia podłączenie 4 napędów dyskowych, jednak IBM

wykorzystał tylko jedno złącze do podłączenia do dwóch napędów, za pomocą
pojedynczego pasma (taśmy). W celu rozróżnienia pomiędzy obydwoma napędami w
paśmie występuje tak zwany przelot. Polega on na zamianie miejscami niektórych
sygnałów dla złączy umieszczonych na paśmie, obsługujących każdy z napędów.


Pasmo łączące napęd z kontrolerem ma zaznaczoną (najczęściej kolorem

czerwonym) pierwszą żyłę (żyłę numer 1). Złącze powinno być podłączone zarówno do
kontrolera, jak i do napędu, tak aby pierwsza żyła została dołączona do pierwszego pinu
złącza. Na kontrolerze (umieszczonym najczęściej na płycie głównej) należy odczytać,
który pin ma numer 1. W napędzie pierwszym pin jest umieszczony zwykle od strony
złącza zasilającego. Na szczęście nieprawidłowe dołączenie pasma nie powoduje
uszkodzenia napędu ani kontrolera i jest łatwo rozpoznawalne - pali się na stałe dioda
kontrolna na napędzie.

background image

Urządzenia techniki komputerowej.

7

______________________________________________________________________

III.

Fizyczna struktura zapisu na dyskietce


Jak już wspomniałem, informacja na dyskietce zapisywana jest na ścieżkach

będących koncentrycznymi okręgami. Ścieżki dzielone są na mniejsze fragmenty zwane
sektorami. Sektor jest najmniejszą porcją informacji, jaką potrafi przeczytać z dysku
kontroler. Przykładowo w komputerach PC sektor ma rozmiar 512 B, jednak odczyt
pojedynczych bajtów nie jest możliwy. Stąd mówimy, że urządzenia typu napędów
dyskowych są ukierunkowane na transmisję blokową. Jeżeli przypomnimy sobie
wiadomości z pierwszej części niniejszej serii, stwierdzimy, że do obsługi tego typu
transmisji predystynowana jest operacja wejścia/wyjścia zwana DMA.


Podział dyskietki na sektory przedstawiony jest na rysunku 5. Zilustrowane jest na

nim także pojęcie numeru strony (ang. side) lub głowicy (ang. head). Związane jest to z
faktem, że wykorzystujemy obydwie strony krążka magnetycznego.

Rysunek 5. Podział dyskietki na ścieżki i sektory

Z takim podziałem i sposobem zapisu i odczytu wiąże się pojęcie adresu fizycznego

na dysku twardym lub dyskietce. Aby zlokalizować szukany sektor (odczytujemy bądź
zapisujemy całe sektory), musimy podać numer strony lub głowicy, numer ścieżki i numer
sektora. Dla dysków twardych zamiast numeru ścieżki wprowadzono numer tak zwanego
cylindra. Koncepcję cylindra ilustruje rysunek 6.


background image

8

Urządzenia techniki komputerowej.

______________________________________________________________________

______________________________________________________________________

Rysunek 6. Ilustracja koncepcji cylindra

Cylindrem jest zbiór wszystkich ścieżek na wszystkich talerzach dysku mających

ten sam promień (czyli wyznaczonych przez przecięcie z cylindrem o tym promieniu - stąd
nazwa). Adres fizyczny na dysku można określić jako adres CHS (ang. Cylinder Head
Sector
). Podając numer cylindra, wybieramy wszystkie ścieżki o tych samych numerach,
lecz na różnych powierzchniach. Numer głowicy identyfikuje konkretną ścieżkę, z której
wybieramy sektor o podanym numerze.


Na dyskietce prócz danych zapisywana jest informacja niezbędna do poprawnego

funkcjonowania napędu i jego kontrolera. Informacja ta obejmuje impulsy synchronizujące
oraz informację o tym, który fragment dyskietki jest odczytywany, jaki jest jego rozmiar
itp. Dodawana jest też informacja pozwalająca na kontrolę poprawności odczytu w
stosunku do zapisu w postaci dodatkowych bajtów zwanych bajtami CRC (ang. Cyclic
Redundancy Check
).

background image

Urządzenia techniki komputerowej.

9

______________________________________________________________________


SPIS TREŚCI



I.

Zasada zapisu informacji na nośnikach magnetycznych ................................................ 2

II. Dyski elastyczne i ich interfejs ....................................................................................... 4

Budowa mechaniczna napędu dysku elastycznego............................................................. 4
Interfejs dysków elastycznych ............................................................................................ 6

III.

Fizyczna struktura zapisu na dyskietce....................................................................... 7



Wyszukiwarka

Podobne podstrony:
budowa i dzialanie FDD id 94136 Nieznany (2)
budowa i dzialanie FDD id 94136 Nieznany (2)
Budowa i zasada działania FDD
Budowa i zasada działania FDD
Budowa i dzialanie komputera
BUDOWA I DZIAŁANIE DYSKÓW TWARDYCH, INFORMATYKA 001
Budowa i działanie sieci komputerowych
Budowa i działanie świecy zapłonowej
Dysk twardy budowa dzialanie
Linux budowa dzialanie
Ściągi z fizyki-2003 r, Budowa i działanie lasera
Budowa i dzialanie komputera, Studia, Informatyka, Informatyka, Informatyka
budowa i działanie procesora
budowa i dzialanie lasera LTF6Z4ASSKJPZYA2QILEEQQK2Y6PZM47V34DRPI
Budowa i dzialanie mechanizmow osprzetu roboczego
budowa i działanie układów rozrządu silników spalinowych
akumulator budowa i działanie

więcej podobnych podstron