TABLICE WZORY

background image
background image

6SLVWUHĞFL

:DUWRĞüEH]Z]JOĊGQDOLF]E\ ....................................................................................................................1

3RWĊJLLSLHUZLDVWNL ...................................................................................................................................1

/RJDU\WP\ ................................................................................................................................................2

6LOQLD:VSyáF]\QQLNGZXPLDQRZ\ .........................................................................................................2

:]yUGZXPLDQRZ\1HZWRQD ...................................................................................................................2

:]RU\VNUyFRQHJRPQRĪHQLD ...................................................................................................................3

&LąJL .........................................................................................................................................................3

)XQNFMDNZDGUDWRZD ................................................................................................................................4

*HRPHWULDDQDOLW\F]QD ..............................................................................................................................4

3ODQLPHWULD ...............................................................................................................................................6

6WHUHRPHWULD ...........................................................................................................................................12

7U\JRQRPHWULD ........................................................................................................................................14

.RPELQDWRU\ND .......................................................................................................................................16

5DFKXQHNSUDZGRSRGRELHĔVWZD .............................................................................................................17

3DUDPHWU\GDQ\FKVWDW\VW\F]Q\FK ..........................................................................................................18

*UDQLFDFLąJX ..........................................................................................................................................18

3RFKRGQDIXQNFML ....................................................................................................................................19

7DEOLFDZDUWRĞFLIXQNFMLWU\JRQRPHWU\F]Q\FK .......................................................................................20

3XEOLNDFMDZVSyá¿QDQVRZDQDSU]H]8QLĊ(XURSHMVNąZUDPDFK(XURSHMVNLHJR)XQGXV]X6SRáHF]QHJR
3XEOLNDFMDMHVWG\VWU\EXRZDQDEH]SáDWQLH

:DUV]DZD

ͣtLJďƌĂŶĞǁnjŽƌLJŵĂƚĞŵĂƚLJĐnjŶĞ͟ƵĚŽƐƚħƉŶŝĂŵLJnjĂnjŐŽĚČĞŶƚƌĂůŶĞũ<ŽŵŝƐũŝŐnjĂŵŝŶĂĐLJũŶĞũ͘

KĮĐLJŶĂĚƵŬĂĐLJũŶĂΎ<ƌnjLJƐnjƚŽĨWĂnjĚƌŽ

background image

1

:$572ĝû%(=:=*/ĉ'1$/,&=%<

:DUWRĞüEH]Z]JOĊGQąOLF]E\U]HF]\ZLVWHMxGH¿QLXMHP\Z]RUHP

/LF]ED x MHVWWRRGOHJáRĞüQDRVLOLF]ERZHMSXQNWXxRGSXQNWX

'ODGRZROQHMOLF]E\xPDP\

x

x

x

x

=

0

0

0

wtedy i tylko wtedy, gdy

== x

'ODGRZROQ\FKOLF]ExyPDP\

3RQDGWRMHĞOLy ≠ 0WR

x

y

x

y

'ODGRZROQ\FKOLF]EaRUD]

PDP\

327ĉ*,,3,(5:,$67.,

1LHFKnEĊG]LHOLF]EąFDáNRZLWąGRGDWQLą'ODGRZROQHMOLF]E\aGH¿QLXMHP\MHMnWąSRWĊJĊ

a

a

a

n

n

= ⋅ ⋅

...

razy

3LHUZLDVWNLHPDU\WPHW\F]Q\P a

n

VWRSQLDn]OLF]E\a

QD]\ZDP\OLF]EĊb

WDNąĪH b

a

n

:V]F]HJyOQRĞFLGODGRZROQHMOLF]E\a]DFKRG]LUyZQRĞü a

a

2

JHĪHOL a orD]OLF]EDnMHVWQLHSDU]\VWDWR a

n

R]QDF]DOLF]EĊ b WDNąĪH b

a

n

3LHUZLDVWNLVWRSQLSDU]\VW\FK]OLF]EXMHPQ\FKQLHLVWQLHMą

1LHFKmnEĊGąOLF]EDPLFDáNRZLW\PLGRGDWQLPL'H¿QLXMHP\

1

m

n

n

m

a

a

=

1LHFKrsEĊGąGRZROQ\PLOLF]EDPLU]HF]\ZLVW\PL-HĞOL a ! Lb

> 0WR]DFKRG]ąUyZQRĞFL

⋅ =

+

=

a

a

a

a

a

a b

r

s

r s

r

s

r s

r

( )

( )

== ⋅

a b

r

r

r

r

r

a

a

b

b

⎛ ⎞ =

⎜ ⎟

⎝ ⎠

r

r s

s

a

a

a

=

-HĪHOLZ\NáDGQLNLrsVąOLF]EDPLFDáNRZLW\PLWRSRZ\ĪV]HZ]RU\RERZLą]XMąGODZV]\VWNLFK
OLF]Ea ≠ 0Lb ≠ 0

background image

2

/2*$5<70<

/RJDU\WPHPlog

a

c GRGDWQLHMOLF]E\cSU]\GRGDWQLHMLUyĪQHMRGSRGVWDZLHaQD]\ZDP\Z\NáDGQLNb

SRWĊJLGRNWyUHMQDOHĪ\SRGQLHĞüaDE\RWU]\PDüc

log

wtedy i tylko wtedy, gdy

a

b

c

b

a

c

=

=

5yZQRZDĪQLH

a

c

a

c

log

'ODGRZROQ\FKOLF]Ex

> 0y > 0RUD]r]DFKRG]ąZ]RU\

log

log

log

log

log

log

a

a

a

a

r

a

x y

x

y

x

r

x

(

)

=

+

= ⋅

a

a

a

a

x

y

x

y

=

log

log

:]yUQD]DPLDQĊSRGVWDZ\ORJDU\WPX
MHĪHOL a

! a ≠ 1b > 0b ≠ 1RUD]c > 0WR

log

log

log

b

a

a

c

c

b

/RJDU\WP log

10

x PRĪQDWHĪ]DSLVDüMDNRORJx OXEOJx

6,/1,$:63Ïà&=<11,.':80,$12:<

6LOQLąOLF]E\FDáNRZLWHMGRGDWQLHMnQD]\ZDP\LORF]\QNROHMQ\FKOLF]EFDáNRZLW\FKRGGRnZáąF]QLH

n

n

!

...

= ⋅ ⋅ ⋅

1 2

3RQDGWRSU]\MPXMHP\XPRZĊĪH
'ODGRZROQHMOLF]E\FDáNRZLWHM

]DFKRG]L]ZLą]HN

= ⋅ +

(

)

n

+

(

)

1

1

! n

!

n

'ODOLF]EFDáNRZLW\FKnkVSHáQLDMąF\FKZDUXQNL

GH¿QLXMHP\ZVSyáF]\QQLNGZXPLDQRZ\

n

k



V\PERO1HZWRQD

n

k

n

k n k



⎟ =

(

)

=DFKRG]ąUyZQRĞFL

n

k

n

n k



⎟ =



n

n

n

0

1



⎟ =



⎠⎟

⎟ = 1

(

)(

) (

)

1

2 ...

1

!

n n

n

n k

n

k

k

− ⋅ ⋅ − +

⎛ ⎞

=

⎜ ⎟

⎝ ⎠

:=Ï5':80,$12:<1(:721$

'ODGRZROQHMOLF]E\FDáNRZLWHMGRGDWQLHMnRUD]GODGRZROQ\FKOLF]EabPDP\

a b

n

a

n

a

b

n

k

a

b

n

n

n

n

n

n k

k

+

(

)

= ⎛


⎟ +



+ + ⎛


+ +

0

1

1

...

...

1

1

1



+ ⎛


ab

n

n

b

n

n

background image

3

:=25<6.5Ï&21(*2012ĩ(1,$

'ODGRZROQ\FKOLF]Eab

a b

a

ab b

a b

a

a b

ab

b

+

(

)

=

+

+

+

(

)

=

+

+

+

2

2

2

3

3

2

2

2

3

3

3

3

2

2

2

3

3

2

2

2

3

3

a b

a

ab b

a b

a

a b

ab

(

)

=

+

(

)

=

+

−− b

3

'ODGRZROQHMOLF]E\FDáNRZLWHMGRGDWQLHMnRUD]GRZROQ\FKOLF]Eab]DFKRG]LZ]yU

a

b

a b a

a

b

a

b

ab

b

n

n

n

n

n k

k

n

n

=

(

)

+

+ +

+ +

+

(

)

1

2

1

2

1

...

...

:V]F]HJyOQRĞFL

a

b

a b a b

a

a

a

b

2

2

2

3

3

1

1

1

=

(

)

+

(

)

− =

(

)

+

(

)

a

==

(

)

+

+

(

)

− =

(

)

+ +

(

)

+

=

+

(

)

a b a

ab b

a

a

a

a

b

a b a

2

2

3

2

3

3

1

1

1

a

2

2

2

3

2

1

1

1

+

(

)

+ =

+

(

)

− +

(

)

ab b

a

a

a

a

a

n

n

n

a

a

a

− =

(

)

+

+

1

1

1

2

....

+ +

(

)

a 1

&,Ą*,

‡ &LąJDU\WPHW\F]Q\
:]yUQDnW\Z\UD]FLąJXDU\WPHW\F]QHJR a

n

( )

RSLHUZV]\PZ\UD]LHa

1

LUyĪQLF\r

a

a

n

r

n

= + −

(

)

1

1

:]yUQDVXPĊ S

a

a

a

n

n

= + + +

1

2

...

SRF]ąWNRZ\FKnZ\UD]yZFLąJXDU\WPHW\F]QHJR

S

a

a

n

a

n

r

n

n

n

= + ⋅ =

+ −

(

)

1

1

2

2

1

2

0LĊG]\VąVLHGQLPLZ\UD]DPLFLąJXDU\WPHW\F]QHJR]DFKRG]L]ZLą]HN

a

a

a

n

n

n

n

=

+

+

1

1

2

2

dla

‡ &LąJJHRPHWU\F]Q\
:]yUQDnW\Z\UD]FLąJXJHRPHWU\F]QHJR a

n

( )

RSLHUZV]\PZ\UD]LHa

1

LLORUD]LHq

a

a q

n

n

n

= ⋅

1

1

2

dla

:]yUQDVXPĊ S

a

a

a

n

n

= + + +

1

2

...

SRF]ąWNRZ\FKnZ\UD]yZFLąJXJHRPHWU\F]QHJR

0LĊG]\VąVLHGQLPLZ\UD]DPLFLąJXJHRPHWU\F]QHJR]DFKRG]L]ZLą]HN

a

a

a

n

n

n

n

2

1

1

2

=

+

dla

‡ 3URFHQWVNáDGDQ\

-HĪHOLNDSLWDáSRF]ąWNRZ\K]áRĪ\P\QDnODWZEDQNXZNWyU\PRSURFHQWRZDQLHORNDWZ\QRVLpZVNDOL
URF]QHMLNDSLWDOL]DFMDRGVHWHNQDVWĊSXMHSRXSá\ZLHNDĪGHJRURNXWUZDQLDORNDW\WRNDSLWDáNRĔFRZ\ K

n

Z\UDĪDVLĊZ]RUHP

K

K

p

n

n

= ⋅ +


⎝⎜


⎠⎟

1

100

background image

4

)81.&-$.:$'5$72:$

3RVWDüRJyOQDIXQNFMLNZDGUDWRZHM f x ax bx c a

x

R

( )

=

+ +

2

0

,

,

:]yUNDĪGHMIXQNFMLNZDGUDWRZHMPRĪQDGRSURZDG]LüGRSRVWDFLNDQRQLF]QHM

2

b

p

a

= −

4

q

a

Δ

= −

:\NUHVHPIXQNFMLNZDGUDWRZHMMHVWSDUDERODRZLHU]FKRáNXZSXQNFLHRZVSyáU]ĊGQ\FK

(

p,q

5DPLRQD

SDUDEROLVNLHURZDQHVąGRJyU\JG\ a ! GRGRáXJG\ a

/LF]EDPLHMVF]HURZ\FKIXQNFMLNZDGUDWRZHM f x ax bx c

( )

=

+ +

2

OLF]EDSLHUZLDVWNyZWUyMPLDQX

NZDGUDWRZHJROLF]EDU]HF]\ZLVW\FKUR]ZLą]DĔUyZQDQLD ax bx c

2

0

+ + = ]DOHĪ\RGZ\UyĪQLND Δ =

b

ac

2

4

± MHĪHOL

Δ < WRIXQNFMDNZDGUDWRZDQLHPDPLHMVF]HURZ\FKWUyMPLDQNZDGUDWRZ\QLHPDSLHUZLDVWNyZ

U]HF]\ZLVW\FKUyZQDQLHNZDGUDWRZHQLHPDUR]ZLą]DĔU]HF]\ZLVW\FK

– MHĪHOL

Δ = WRIXQNFMDNZDGUDWRZDPDGRNáDGQLHMHGQRPLHMVFH]HURZHWUyMPLDQNZDGUDWRZ\PDMHGHQ

SLHUZLDVWHNSRGZyMQ\UyZQDQLHNZDGUDWRZHPDGRNáDGQLHMHGQRUR]ZLą]DQLHU]HF]\ZLVWH

x

x

b

a

1

2

2

=

= −

± MHĪHOL

Δ > WRIXQNFMDNZDGUDWRZDPDGZDPLHMVFD]HURZHWUyMPLDQNZDGUDWRZ\PDGZDUyĪQH

SLHUZLDVWNLU]HF]\ZLVWHUyZQDQLHNZDGUDWRZHPDGZDUR]ZLą]DQLDU]HF]\ZLVWH

x

b

a

x

b

a

1

2

2

2

= − −

= − +

Δ

Δ

-HĞOL

0WRZ]yUIXQNFMLNZDGUDWRZHMPRĪQDGRSURZDG]LüGRSRVWDFLLORF]\QRZHM

f x

a x

x

x

x

( )

=

(

)

(

)

1

2

‡ :]RU\9LpWH¶D

-HĪHOL

0WR

x

x

b

a

x x

c

a

1

2

1

2

+ = −

⋅ =

*(20(75,$$1$/,7<&=1$

‡ 2GFLQHN
'áXJRĞüRGFLQNDRNRĔFDFKZSXQNWDFK

A

x

y

B

x

y

A

A

=

(

)

=

(

)

,

,

,

B

B

MHVWGDQDZ]RUHP

AB

x

x

y

y

B

A

B

A

=

(

)

+

(

)

2

2

:VSyáU]ĊGQHĞURGNDRGFLQNDAB

x

x

y

y

A

B

A

B

+

+


⎝⎜


⎠⎟

2

2

,

x

y

O

A=(x

A

, y

A

)

B=(x

B

, y

B

)

background image

5

‡ :HNWRU\
:VSyáU]ĊGQHZHNWRUD AB

AB

x

x

y

y

B

A

B

A

=

[

]

,

-HĪHOL u

u u

v

v v

G

G

=

[

]

=

[

]

1

2

1

2

,

,

,

VąZHNWRUDPL]DĞaMHVWOLF]EąWR

u

v

u

v u

v

a u

a u a u

G G

G

+ =

+

+

[

]

⋅ = ⋅

[

1

1

2

2

1

2

,

,

]]

‡ 3URVWD
5yZQDQLHRJyOQHSURVWHM

Ax

By C

+

+ = 0,

JG]LH A

B

2

2

0

+

≠ WMZVSyáF]\QQLNLABQLHVąUyZQRF]HĞQLHUyZQH

-HĪHOLA = WRSURVWDMHVWUyZQROHJáDGRRVLOxMHĪHOLB = WRSURVWDMHVWUyZQROHJáDGRRVLOy
MHĪHOLC = WRSURVWDSU]HFKRG]LSU]H]SRF]ąWHNXNáDGXZVSyáU]ĊGQ\FK

-HĪHOLSURVWDQLHMHVWUyZQROHJáDGRRVLOyWRPDRQDUyZQDQLH
NLHUXQNRZH

y

ax b

=

+

/LF]EDaWRZVSyáF]\QQLNNLHUXQNRZ\SURVWHM

a

tg

=

α

:VSyáF]\QQLNbZ\]QDF]DQDRVLOySXQNWZNWyU\PGDQDSURVWDMąSU]HFLQD

5yZQDQLHNLHUXQNRZHSURVWHMRZVSyáF]\QQLNXNLHUXQNRZ\PaNWyUDSU]HFKRG]LSU]H]SXQNWP

x y

=

(

)

0

0

,

y

a x

x

y

=

(

)

+

5yZQDQLHSURVWHMNWyUDSU]HFKRG]LSU]H]GZDGDQHSXQNW\

(

)(

)

y

y

x

x

y

y

x

x

A

B

A

B

A

A

(

)

(

)

= 0

‡ 3URVWDLSXQNW

2GOHJáRĞüSXQNWXP

x y

=

(

)

0

0

,

RGSURVWHMRUyZQDQLXAx By C

+

+ = MHVWGDQDZ]RUHP

Ax

By

C

A

B

0

0

2

2

‡ 3DUDSURVW\FK
'ZLHSURVWHRUyZQDQLDFKNLHUXQNRZ\FK

y

a x b

y

a x b

=

+

=

+

1

1

2

2

VSHáQLDMąMHGHQ]QDVWĊSXMąF\FKZDUXQNyZ

± VąUyZQROHJáHJG\ a

a

1

2

± VąSURVWRSDGáHJG\ a a

1 2

1

= −

± WZRU]ąNąWRVWU\ φ Ltg

=

+

a

a

a a

1

2

1 2

1

φ

x

y

O

b

y

=

ax

+

b

Į

background image

6

'ZLHSURVWHRUyZQDQLDFKRJyOQ\FK

A x

B y C

A x

B y C

1

1

1

2

2

2

0

0

+

+

=

+

+

=

± VąUyZQROHJáHJG\ A B

A B

1

2

2

1

0

=

± VąSURVtoSDGáHJG\ A A

B B

1

2

1

2

0

+

=

– WZRU]ąNąWRVWU\

φ L

tg

=


+

A B

A B

A A

B B

1

2

2

1

1

2

1

2

φ

‡ 7UyMNąW

3ROHWUyMNąWDABCRZLHU]FKRáNDFK A

x

y

B

x

y

C

x

y

A

A

B

B

C

C

=

(

)

=

(

)

=

(

)

,

,

,

,

,

MHVWGDQHZ]RUHP

P

x

x

y

y

y

=

y

x

x

ABC

B

A

C

A

B

A

C

A

Δ

(

)

(

)

(

)

(

)

1
2

ĝURGHNFLĊĪNRĞFLWUyMNąWDABCF]\OLSXQNWSU]HFLĊFLDMHJRĞURGNRZ\FKPDZVSyáU]ĊGQH

x

x

x

y

y

y

A

B

C

A

B

C

+

+

+

+


⎝⎜


⎠⎟

3

3

,

‡ 3U]HNV]WDáFHQLDJHRPHWU\F]QH

± SU]HVXQLĊFLHRZHNWRU u

a b

G

=

[ ]

,

SU]HNV]WDáFDSXQNW A

x y

=

( )

,

QDSXQNW A

x

a y b

'

,

=

+

+

(

)

± V\PHWULDZ]JOĊGHPRVLOxSU]HNV]WDáFDSXQNW A

x y

=

( )

,

QDSXQNW

A

x

y

'

,

=

(

)

± V\PHWULDZ]JOĊGHPRVLOySU]HNV]WDáFDSXQNW A

x y

=

( )

,

QDSXQNW

A

x y

'

,

= −

(

)

± V\PHWULDZ]JOĊGHPSXQNWX a b

,

( )

SU]HNV]WDáFDSXQNW A

x y

=

( )

,

QDSXQNW

A

a

x b

y

'

,

=

(

)

2

2

± MHGQRNáDGQRĞüRĞURGNXZSXQNFLHOLVNDOLV  SU]HNV]WDáFDSXQNW AQDSXQNW

A'

WDNLĪH

OA

s OA

'

= ⋅

DZLĊFMHĞOL O

x y

=

(

)

0

0

,

WRMHGQRNáDGQRĞüWDSU]HNV]WDáFDSXQNW A

x y

=

( )

,

QDSXQNW

A

sx

s x sy

s y

'

,

=

+ −

(

)

+ −

(

)

(

)

1

1

0

0

‡ 5yZQDQLHRNUĊJX
5yZQDQLHRNUĊJXRĞURGNXZSXQNFLH S

a b

=

( )

,

LSURPLHQLXr>

x a

y b

r

(

)

+

(

)

=

2

2

2

OXE

3/$1,0(75,$

‡ &HFK\SU]\VWDZDQLDWUyMNąWyZ

A

B

C

D

E

F

background image

7

7RĪHGZDWUyMNąW\ABCLDEFVąSU]\VWDMąFH

Δ

≡ Δ

(

)

ABC

DEF

PRĪHP\VWZLHUG]LüQDSRGVWDZLHNDĪGHM

]QDVWĊSXMąF\FKFHFKSU]\VWDZDQLDWUyMNąWyZ

± FHFKDSU]\VWDZDQLDÄERN±ERN±ERN´

RGSRZLDGDMąFHVRELHERNLREXWUyMNąWyZPDMąWHVDPHGáXJRĞFL AB

DE

AC

DF

BC

EF

,

,

± FHFKDSU]\VWDZDQLDÄERN±NąW±ERN´

GZDERNLMHGQHJRWUyMNąWDVąUyZQHRGSRZLDGDMąF\PLPERNRPGUXJLHJRWUyMNąWDRUD]NąW]DZDUW\
PLĊG]\W\PLERNDPLMHGQHJRWUyMNąWDPDWDNąVDPąPLDUĊMDNRGSRZLDGDMąF\PXNąWGUXJLHJRWUyMNąWD
QS

AB

DE

AC

DF

BAC

EDF

,

,

)

)

± FHFKDSU]\VWDZDQLDÄNąW±ERN±NąW´

MHGHQERNMHGQHJRWUyMNąWDPDWĊVDPąGáXJRĞüFRRGSRZLDGDMąF\PXERNGUXJLHJRWUyMNąWD
RUD]PLDU\RGSRZLDGDMąF\FKVRELHNąWyZREXWUyMNąWyZSU]\OHJá\FKGRERNXVąUyZQH
QS AB

DE

BAC

EDF

ABC

DEF

,

,

)

)

)

)

‡ &HFK\SRGRELHĔVWZDWUyMNąWyZ

7RĪHGZDWUyMNąW\ABCLDEFVąSRGREQH

Δ

Δ

(

)

ABC

DEF

PRĪHP\VWZLHUG]LüQDSRGVWDZLHNDĪGHM

]QDVWĊSXMąF\FKFHFKSRGRELHĔVWZDWUyMNąWyZ

± FHFKDSRGRELHĔVWZDÄERN±ERN±ERN´

GáXJRĞFLERNyZMHGQHJRWUyMNąWDVąSURSRUFMRQDOQHGRRGSRZLHGQLFKGáXJRĞFLERNyZGUXJLHJRWUyMNąWD

QS

AB

DE

AC

DF

BC

EF

± FHFKDSRGRELHĔVWZDÄERN±NąW±ERN´

GáXJRĞFLGZyFKERNyZMHGQHJRWUyMNąWDVąSURSRUFMRQDOQHGRRGSRZLHGQLFKGáXJRĞFLGZyFKERNyZ

GUXJLHJRWUyMNąWDLNąW\PLĊG]\W\PLSDUDPLERNyZVąSU]\VWDMąFHQS

± FHFKDSRGRELHĔVWZDÄNąW±NąW±NąW´

GZDNąW\MHGQHJRWUyMNąWDVąSU]\VWDMąFHGRRGSRZLHGQLFKGZyFKNąWyZGUXJLHJRWUyMNąWDZLĊFWHĪ
LWU]HFLHNąW\REXWUyMNąWyZVąSU]\VWDMąFH )

)

)

)

)

)

BAC

EDF

ABC

DEF

ACB

DFE

,

,

A

B

C

D

E

F

background image

8

3U]\MPXMHP\R]QDF]HQLDZWUyMNąFLHABC

abc

±GáXJRĞFLERNyZOHĪąF\FKRGSRZLHGQLR

QDSU]HFLZNRZLHU]FKRáNyZABC

2 p = a + b + c

±REZyGWUyMNąWD

ĮȕȖ

±PLDU\NąWyZSU]\ZLHU]FKRáNDFKABC

h

a

h

b

h

c

±Z\VRNRĞFLRSXV]F]RQH]ZLHU]FKRáNyZ

ABC

Rr

±SURPLHQLHRNUĊJyZRSLVDQHJR

LZSLVDQHJR

‡ 7ZLHUG]HQLHVLQXVyZ

α

β

γ

A

C

B

a

b

c

Ȗ

ȕ

Į

A

C

D

c

a

b

h

c

B

Į

ȕ

Ȗ

‡ 7ZLHUG]HQLHFRVLQXVyZ

a

b

c

bc

b

a

c

ac

c

a

b

ab

2

2

2

2

2

2

2

2

2

2

2

2

=

+ −

=

+ −

=

+ −

cos

cos

cos

γ

β

α

‡ :]RU\QDSROHWUyMNąWD

P

R

P

a h

b h

c h

P

a b

a c

ABC

a

b

c

ABC

=

⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅

=

⋅ ⋅

=

⋅ ⋅

=

1

2

1

2

1

2

1

2

1

2

1

sin

sin

2

1

2

1

2

1

2

2

2

2

b c

P

a

b

c

ABC

⋅ ⋅

=

=

=

sin

sin

sin

sin

sin

sin

sin

si

n

n

sin

sin

sin

sin

=

=

P

abc

R

ABC

ABC

4

2

2

ssin

P

rp

P

p p a

p b

p c

ABC

ABC

=

=

(

)

(

)

(

)

α

α

α

γ

α

γ

β

β

β

γ

γ

α

β

γ

β

‡ 7ZLHUG]HQLH3LWDJRUDVDZUD]]WZLHUG]HQLHPRGZURWQ\PGRQLHJR
:WUyMNąFLHABCNąWȖMHVWSURVW\ZWHG\LW\ONRZWHG\JG\a

b

c

2

‡ =ZLą]NLPLDURZHZWUyMNąFLHSURVWRNąWQ\P

=DáyĪP\ĪHNąWȖMHVWSURVW\:yZF]DV

h

AD DB

h

ab

c

a

c

c

a

b

b

R

c

r

c

c

2

1

1

2

=

=

= ⋅

= ⋅

= ⋅

= ⋅

=

=

sin

cos

tg

tg

a

a b c

p c

+ − = −

2

α

β

α

β

background image

9

‡ 7UyMNąWUyZQRERF]Q\

a±GáXJRĞüERNX
h±Z\VRNRĞüWUyMNąWD

h

a

R

h

P

a

r

h

=

=

=

=

3

2

2

3

3

4

1

3

2

Δ

‡ 7ZLHUG]HQLH7DOHVDZUD]]WZLHUG]HQLHPRGZURWQ\PGRQLHJR
5yĪQHSURVWHACLBDSU]HFLQDMąVLĊZSXQNFLHPSU]\F]\PVSHáQLRQ\MHVWMHGHQ]ZDUXQNyZ
± SXQNWAOHĪ\ZHZQąWU]RGFLQNDPCRUD]SXQNWBOHĪ\ZHZQąWU]RGFLQNDPD
OXE
± SXQNWAOHĪ\QD]HZQąWU]RGFLQNDPCRUD]SXQNWBOHĪ\QD]HZQąWU]RGFLQNDPD
:yZF]DVSURVWHABLCDVąUyZQROHJáHZWHG\LW\ONRZWHG\JG\

PA

AC

PB

BD

‡ &]ZRURNąW\

Trapez
&]ZRURNąWNWyU\PDFRQDMPQLHMMHGQąSDUĊERNyZ
UyZQROHJá\FK
:]yUQDSROHWUDSH]X

P

a b

h

= + ⋅

2

5yZQROHJáRERN
&]ZRURNąWNWyU\PDGZLHSDU\ERNyZ
UyZQROHJá\FK
:]RU\QDSROHUyZQROHJáRERNX

P

ah

a b

AC BD

=

= ⋅ ⋅

= ⋅

sin

sin

1

2

φ

α

C

B

A

a

h

a

a

B

A

C

D

P

D

B

C

P

A

A

B

C

D

b

a

h

h

a

D

C

B

A

b

ij

Į

background image

Romb
&]ZRURNąWNWyU\PDZV]\VWNLHERNLMHGQDNRZHMGáXJRĞFL
:]RU\QDSROHURPEX

P

ah

a

AC BD

=

= ⋅

= ⋅

2

1

2

sin

α

'HOWRLG
&]ZRURNąWZ\SXNá\NWyU\PDRĞV\PHWULL]DZLHUDMąFąMHGQą
]SU]HNąWQ\FK
:]yUQDSROHGHOWRLGX

P

AC BD

= ⋅

1

2

‡ .RáR

:]yUQDSROHNRáDRSURPLHQLXr

P

r

=

π

2

2EZyGNRáDRSURPLHQLXr

L

r

= 2

π

‡ :\FLQHNNRáD

:]yUQDSROHZ\FLQNDNRáDRSURPLHQLXrLNąFLHĞURGNRZ\PĮ
Z\UDĪRQ\PZVWRSQLDFK

P

r

=

°

π

2

360

α

'áXJRĞüáXNXABZ\FLQNDNRáDRSURPLHQLXrLNąFLH
ĞURGNRZ\PĮZ\UDĪRQ\PZVWRSQLDFK

l

r

=

°

2

360

π

α

‡ .ąW\ZRNUĊJX

0LDUDNąWDZSLVDQHJRZRNUąJMHVWUyZQDSRáRZLHPLDU\NąWD
ĞURGNRZHJRRSDUWHJRQDW\PVDP\PáXNX

0LDU\NąWyZZSLVDQ\FKZRNUąJRSDUW\FKQDW\PVDP\PáXNX
VąUyZQH

0LDU\NąWyZZSLVDQ\FKZRNUąJRSDUW\FKQDáXNDFKUyZQ\FK
VąUyZQH

r

O

B

A

A

C

D

B

r

O

A

C

B

D

Į

a

h

a

A

B

O

2

Į

Į

Į

Į

Į

background image

11

‡ 7ZLHUG]HQLHRNąFLHPLĊG]\VW\F]QąLFLĊFLZą

A

C

B

O

A

C

B

O

'DQ\MHVWRNUąJRĞURGNXZSXQNFLHOLMHJRFLĊFLZDAB3URVWDACMHVWVW\F]QDGRWHJRRNUĊJXZSXQNFLHA
:WHG\ )

)

AOB

CAB

= ⋅

2

SU]\F]\PZ\ELHUDP\WHQ]NąWyZĞURGNRZ\FKAOBNWyU\MHVWRSDUW\QDáXNX

]QDMGXMąF\PVLĊZHZQąWU]NąWDCAB

‡ 7ZLHUG]HQLHRRGFLQNDFKVW\F]Q\FK
-HĪHOLVW\F]QHGRRNUĊJXZSXQNWDFKALBSU]HFLQDMąVLĊZSXQNFLHPWR

PA

PB

A

B

P

‡ 7ZLHUG]HQLHRRGFLQNDFKVLHF]QHMLVW\F]QHM
'DQHVąSURVWDSU]HFLQDMąFDRNUąJZSXQNWDFKALBRUD]SURVWDVW\F]QDGRWHJRRNUĊJXZSXQNFLHC-HĪHOL
SURVWHWHSU]HFLQDMąVLĊZSXQNFLHPWR

PA PB

PC

=

2

C

B

P

A

background image

12

‡ 2NUąJRSLVDQ\QDF]ZRURNąFLH

C

D

A

B

Į

į

Ȗ

ȕ

‡ 2NUąJZSLVDQ\ZF]ZRURNąt

A

D

a

C

B

b

c

d

r

67(5(20(75,$

‡ 7ZLHUG]HQLHRWU]HFKSURVW\FKSURVWRSDGá\FK

P

m

l

k

3URVWDkSU]HELMDSáDV]F]\]QĊZSXQNFLHP.3URVWDlMHVWU]XWHPSURVWRNąWQ\PSURVWHMkQDWĊSáDV]F]\]QĊ
3URVWDmOHĪ\QDWHMSáDV]F]\ĨQLHLSU]HFKRG]LSU]H]SXQNWP
:yZF]DVSURVWDmMHVWSURVWRSDGáDGRSURVWHMkZWHG\LW\ONRZWHG\JG\MHVWSURVWRSDGáDGRSURVWHMl

1DF]ZRURNąFLHPRĪQDRSLVDüRNUąJZWHG\LW\ONRZWHG\
JG\VXP\PLDUMHJRSU]HFLZOHJá\FKNąWyZZHZQĊWU]Q\FKVą
UyZQHƒ

+ = + = 180

α

γ

β

δ

:F]ZRURNąWZ\SXNá\PRĪQDZSLVDüRNUąJZWHG\LW\ONR
ZWHG\JG\VXP\GáXJRĞFLMHJRSU]HFLZOHJá\FKERNyZVą
UyZQH

a

c

b

d

+ = +

background image

13

3U]\MPXMHP\R]QDF]HQLD
P ±SROHSRZLHU]FKQLFDáNRZLWHM
P

p

±SROHSRGVWDZ\

P

b

±SROHSRZLHU]FKQLERF]QHM

V

±REMĊWRĞü

‡ 3URVWRSDGáRĞFLDQ

P

ab bc

ac

V

abc

=

+ +

(

)

=

2

JG]LHabcVąGáXJRĞFLDPLNUDZĊG]L
SURVWRSDGáRĞFLDQX

‡ *UDQLDVWRVáXSSURVW\

P

p h

V

P h

b

p

=

=

2

JG]LHpMHVWREZRGHPSRGVWDZ\JUDQLDVWRVáXSD

‡ 2VWURVáXS

V

P h

p

=

1
3

JG]LHhMHVWZ\VRNRĞFLąRVWURVáXSD

b

E

B

F

C

G

D

A

H

a

c

A

B

C

D

E

F

G

H

I

J

h

B

A

E

D

S

C

O

h

background image

14

‡ :DOHF

P

rh

P

r r

h

V

r h

b

=

=

+

(

)

=

2

2

2

π

π

π

JG]LHrMHVWSURPLHQLHPSRGVWDZ\h±Z\VRNRĞFLą
ZDOFD

‡ 6WRĪHN

P

rl

P

r r

l

V

r h

b

=

=

+

(

)

=

π

π

π

1
3

2

JG]LHrMHVWSURPLHQLHPSRGVWDZ\h±Z\VRNRĞFLą
l±GáXJRĞFLąWZRU]ąFHMVWRĪND

‡ .XOD

P

r

V

r

=

=

4

4
3

2

3

π

π

JG]LHrMHVWSURPLHQLHPNXOL

75<*2120(75,$

‡ 'H¿QLFMHIXQNFMLWU\JRQRPHWU\F]Q\FKNąWDRVWUHJRZWUyMNąFLHSURVWRNąWQ\P

n

s

s

c

=

=

=

=

si

in

co

os

=

a
c

b

c

b

c

a
c

a
b

tg

tg

=

b
a

α

α

α

β

β

β

h

r

O

l

r

h

O

S

r

O

C

A

B

a

b

c

Į

ȕ

background image

15

‡ 'H¿QLFMHIXQNFMLWU\JRQRPHWU\F]Q\FK

si

gdzie

jest

n

cos

,

=

=

=

y

r

x
r

y
x

x

tg

gdy

promieniem wodzącym pu

0

nktu

M

2

2

0

r

x

y

=

+

>

α

α

α

‡ :\NUHV\IXQNFMLWU\JRQRPHWU\F]Q\FK

2

ʌ

x

y

1

1

í

0

ʌ

3

2

ʌ

2

ʌ

í

ʌ

í

x

y

1

1

í

0

2

ʌ

ʌ

3

2

ʌ

2

ʌ

í

ʌ

í

x

y

1

1

í

0

2

ʌ

ʌ

3

2

ʌ

2

ʌ

í

ʌ

í

2

í

3

í

4

í

2

3

4

y = sin x

y = cos x

y = tg x

‡ =ZLą]NLPLĊG]\IXQNFMDPLWHJRVDPHJRNąWD

=

sin

cos

sin

cos

,

2

2

1

2

π

π

+

=

+

tg

dla

k

k

całkowite

α

α

α

α
α

α

‡1LHNWyUHZDUWRĞFLIXQNFMLWU\JRQRPHWU\F]Q\FK

Į

°

°

45°

°

°

π

6

π

4

π

3

π

2

VLQ

Į

1

2

2

2

3

2

1

FRV

Į

1

3

2

2

2

1

2

WJ

Į

3

3

1

3

QLH

LVWQLHMH

M = (x, y)

x

x

y

O

r

y

Į

background image

16

‡ )XQNFMHVXP\LUyĪQLF\NąWyZ
'ODGRZROQ\FKNąWyZ

Įȕ

]DFKRG]ąUyZQRĞFL

sin

sin

cos

cos sin

sin

sin

cos

cos sin

cos

+

(

)

=

+

(

)

=

+

((

)

=

=

+

cos

cos

sin

sin

cos

cos

cos

sin

sin

α

α

α

α

β

β

β

β

β

α

α

β

β

α

α

β

β

α

α

α

α β

β

β

(

)

3RQDGWRPDP\UyZQRĞFL

tg

tg

tg

tg

tg

tg

tg

tg

tg

tg

+

(

)

=

+

(

)

=

+

1

1

β

α

α

α

α

β

β

β

β

α

α

β

NWyUH]DFKRG]ą]DZV]HJG\VąRNUHĞORQHLPLDQRZQLNSUDZHMVWURQ\QLHMHVW]HUHP

‡ )XQNFMHSRGZRMRQHJRNąWD

sin

sin

cos

cos

cos

sin

cos

sin

2

2

2

2

1 1 2

2

2

2

2

2

=

=

=

− = −

= 2

tg

tg

1

2

− tg

α

α

α

α

α

α

α

α

α

α

α

‡ 6XP\UyĪQLFHLLORF]\Q\IXQNFMLWU\JRQRPHWU\F]Q\FK

sin

sin

sin

cos

sin

sin

cos(

) cos(

)

si

(

)

+

=

+

= −

+

2

2

2

1

2

n

n

sin

cos

sin

cos

cos

cos(

) cos(

)

cos

(

)

=

+

=

+

+

2

2

2

1

2

++

=

+

=

+

+

cos

cos

cos

sin

cos

sin(

) sin(

)

cos

c

(

)

2

2

2

1

2

o

os

sin

sin

= −

+

2

2

2

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

β

β

β

β

β

β

β

β

β

β

β

β

β

β

β

β

β

β

β

β

β

‡ :\EUDQHZ]RU\UHGXNF\MQH

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

‡ 2NUHVRZRĞüIXQNFMLWU\JRQRPHWU\F]Q\FK

sin

sin

cos

cos

+ ⋅

°

(

)

=

+ ⋅

°

(

)

=

+ ⋅

k

k

k

360

360

180

tg

°°

(

)

= tg – całkowite

,

k

α

α

α

α

α

α

.20%,1$725<.$

‡ :DULDFMH]SRZWyU]HQLDPL
/LF]EDVSRVREyZQDNWyUH]nUyĪQ\FKHOHPHQWyZPRĪQDXWZRU]\üFLąJVNáDGDMąF\VLĊ]kQLHNRQLHF]QLH
UyĪQ\FKZ\UD]yZMHVWUyZQDn

k

‡ :DULDFMHEH]SRZWyU]HĔ
/LF]EDVSRVREyZQDNWyUH]nUyĪQ\FKHOHPHQWyZPRĪQDXWZRU]\üFLąJVNáDGDMąF\VLĊ]

UyĪQ\FKZ\UD]yZMHVWUyZQD

n n

n k

n

n k

⋅ −

(

)

⋅ ⋅ − +

(

)

=

(

)

1

1

...

!

!

background image

17

‡ 3HUPXWDFMH
/LF]EDVSRVREyZQDNWyUHnn UyĪQ\FKHOHPHQWyZPRĪQDXVWDZLüZFLąJMHVWUyZQDn

‡ .RPELQDFMH
/LF]EDVSRVREyZQDNWyUHVSRĞUyGnUyĪQ\FKHOHPHQWyZPRĪQDZ\EUDü

0

HOHPHQWyZMHVWUyZQD

n

k



5$&+81(.35$:'232'2%,(ē67:$

‡ :áDVQRĞFLSUDZGRSRGRELHĔVWZD

‡ 7ZLHUG]HQLH.ODV\F]QDGH¿QLFMDSUDZGRSRGRELHĔVWZD
1LHFKȍEĊG]LHVNRĔF]RQ\P]ELRUHPZV]\VWNLFK]GDU]HĔHOHPHQWDUQ\FK-HĪHOLZV]\VWNLH]GDU]HQLD
MHGQRHOHPHQWRZHVąMHGQDNRZRSUDZGRSRGREQHWRSUDZGRSRGRELHĔVWZR]GDU]HQLD

A

⊂ Ω

MHVWUyZQH

P A

A

( )

= Ω

JG]LH A R]QDF]DOLF]EĊHOHPHQWyZ]ELRUXA]DĞ

Ω ±OLF]EĊHOHPHQWyZ]ELRUXȍ

‡ 3UDZGRSRGRELHĔVWZRZDUXQNRZH
1LHFKA, BEĊGą]GDU]HQLDPLORVRZ\PL]DZDUW\PLZȍSU]\F]\P P B

( )

> 3UDZGRSRGRELHĔVWZHP

ZDUXQNRZ\P P A B

|

(

)

QD]\ZDP\OLF]EĊ

P A B

P A

B

P B

|

(

)

=

(

)

( )

‡ 7ZLHUG]HQLHRSUDZGRSRGRELHĔVWZLHFDáNRZLW\P

-HĪHOL]GDU]HQLDORVRZH B B

B

n

1

2

,

,

,

!

]DZDUWHZȍVSHáQLDMąZDUXQNL

B B

B

n

1

2

,

,

,

!

VąSDUDPLUR]áąF]QHW]Q B

B

i

j

= ∅ GOD

B

B

B

n

1

2

∪ ∪

=

!

Ω

,

P B

i

n

i

( )

> 0

1

dla

,

WRGODNDĪGHJR]GDU]HQLDORVRZHJRA]DZDUWHJRZȍ]DFKRG]LUyZQRĞü

P A

P A B

P B

P A B

P B

P A B

P B

n

n

( )

=

(

)

( )

+

(

)

( )

+ +

(

)

( )

|

|

|

1

1

2

2

!

background image

18

3$5$0(75<'$1<&+67$7<67<&=1<&+

‡ ĝUHGQLDDU\WPHW\F]QD
ĝUHGQLDDU\WPHW\F]QDnOLF]Ea

1

a

2

a

n

MHVWUyZQD

a

a

a

a

n

n

= + + +

1

2

...

‡ ĝUHGQLDZDĪRQD
ĝUHGQLDZDĪRQDnOLF]Ea

1

a

2

a

n

NWyU\PSU]\SLVDQRGRGDWQLHZDJL±RGSRZLHGQLRw

1

w

2

w

n

MHVW

UyZQD

w a

w a

w a

w

w

w

n

n

n

1

1

2

2

1

2

⋅ +

⋅ + +

+

+ +

...

...

‡ ĝUHGQLDJHRPHWU\F]QD
ĝUHGQLDJHRPHWU\F]QDnQLHXMHPQ\FKOLF]Ea

1

a

2

a

n

MHVWUyZQD

a a

a

n

n

1

2

˜ ˜ ˜

...

‡ 0HGLDQD
0HGLDQąXSRU]ąGNRZDQHJRZNROHMQRĞFLQLHPDOHMąFHM]ELRUXnGDQ\FKOLF]ERZ\FKa

a

a

a

n

1

2

3

...

MHVW

± GODnQLHSDU]\VW\FK

a

n

+1

2

ĞURGNRZ\Z\UD]FLąJX

± GODnSDU]\VW\FK

1

2

2

2

1

a

a

n

n

+

(

)

+

ĞUHGQLDDU\WPHW\F]QDĞURGNRZ\FKZ\UD]yZFLąJX

‡ :DULDQFMDLRGFK\OHQLHVWDQGDUGRZH
:DULDQFMąnGDQ\FKOLF]ERZ\FKa

1

a

2

a

n

RĞUHGQLHMDU\WPHW\F]QHM a MHVWOLF]ED

σ

2

1

2

2

2

2

1

2

2

2

2

2

=

(

)

+

(

)

+ +

(

)

=

+ + +

( )

a

a

a

a

a

a

n

a

a

a

n

a

n

n

...

...

2GFK\OHQLHVWDQGDUGRZH

ı

MHVWSLHUZLDVWNLHPNZDGUDWRZ\P]ZDULDQFML

*5$1,&$&,Ą*8

‡ *UDQLFDVXP\UyĪQLF\LORF]\QXLLORUD]XFLąJyZ
'DQHVąFLąJL a

b

n

n

( ) ( )

i

RNUHĞORQHGODn 1

-HĪHOLlim

n

n

a

a

→∞

= RUD]lim

n

n

b

b

→∞

= WR

lim

lim

lim

n

n

n

n

n

n

n

a

b

a b

a

b

a b

→∞

→∞

+

(

)

= +

(

)

= −

→∞

(

)

= ⋅

a b

a b

n

n

-HĪHOLSRQDGWRb

n

≠ 0 GODn RUD]b ≠ 0WR

lim

n

n

n

a
b

a
b

→∞

=

background image

19

‡ 6XPDZ\UD]yZQLHVNRĔF]RQHJRFLąJXJHRPHWU\F]QHJR
'DQ\MHVWQLHVNRĔF]RQ\FLąJJHRPHWU\F]Q\ a

n

( )

,RNUHĞORQ\GODn

1

RLORUD]LHq

1LHFK S

n

( )

R]QDF]DFLąJVXPSRF]ąWNRZ\FKZ\UD]yZFLąJX a

n

( )

WR]QDF]\FLąJRNUHĞORQ\Z]RUHP

S

a

a

a

n

n

= + + +

1

2

...

GODn 1-HĪHOL q 1WRFLąJ S

n

( )

PDJUDQLFĊ

S

S

a

q

n

n

=

=

→∞

lim

1

1

7ĊJUDQLFĊQD]\ZDP\VXPąZV]\VWNLFKZ\UD]yZFLąJX a

n

( )

32&+2'1$)81.&-,

‡ 3RFKRGQDVXP\UyĪQLF\LORF]\QXLLORUD]XIXQNFML

c f x

c f

x

c

R

f x

g x

f

x

g x

f x

( )

⎡⎣

⎤⎦′ = ⋅ ′

( )

( )

+

( )

⎡⎣

⎤⎦′ = ′

( )

+ ′

( )

( )

dla

g

g x

f

x

g x

f x

g x

f

x

g x

f x

g x

( )

⎡⎣

⎤⎦′ = ′

( )

− ′

( )

( )

( )

⎡⎣

⎤⎦′ = ′

( )

( )

+

( )

⋅ ′

( )

ff x

g x

f

x

g x

f x

g x

g x

g x

( )

( )



=

( )

( )

( )

⋅ ′

( )

( )

⎡⎣

⎤⎦

(

2

, gdy

))

≠ 0

‡ 3RFKRGQHQLHNWyU\FKIXQNFML
1LHFKabcEĊGąGRZROQ\PLOLF]EDPLU]HF]\ZLVW\PLnGRZROQąOLF]EąFDáNRZLWą

IXQNFMD

SRFKRGQDIXQNFML

f x

c

( )

=

( )

=

f

x

f x

ax b

( )

=

+

( )

=

f

x

a

f x

ax

bx c

( )

=

+ +

2

( )

=

+

f

x

ax b

2

f x

a

x

( )

=

, x

≠ 0

( )

=

f

x

a

x

2

f x

x

n

( )

=

( )

=

f

x

nx

n 1

‡ 5yZQDQLHVW\F]QHM
-HĪHOLIXQNFMDfPDSRFKRGQąZSXQNFLHx

WRUyZQDQLHVW\F]QHMGRZ\NUHVXIXQNFMLfZSXQNFLH

x

f x

0

0

,

( )

(

)

GDQHMHVWZ]RUHP

y

ax b

=

+

,

JG]LHZVSyáF]\QQLNNLHUXQNRZ\VW\F]QHMMHVWUyZQ\ZDUWRĞFLSRFKRGQHMIXQNFMLfZSXQNFLHx

WR]QDF]\

a

f

x

= ′

( )

QDWRPLDVW

b

f x

f

x

x

=

( )

− ′

( )

5yZQDQLHVW\F]QHMPRĪHP\]DSLVDüZSRVWDFL

y

f

x

x

x

f x

= ′

( )

⋅ −

(

)

+

( )

background image

⎡⎣ ⎤⎦

α

sin

cos

α

β

tg α

⎡⎣ ⎤⎦

β

0

0,0000

0,0000

90

1

89

2

88

3

87

4

86

5

85

6

84

7

83

8

82

9

81

10

0,1736

0,1763

80

11

79

12

78

13

77

14

76

15

75

16

74

17

73

18

72

19

71

20

0,3420

0,3640

70

21

69

22

68

23

67

24

66

25

65

26

64

27

63

28

62

29

61

30

0,5000

0,5774

60

31

59

32

58

33

57

34

56

35

55

36

54

37

53

38

52

39

51

40

0,6428

0,8391

50

41

49

42

48

43

47

44

46

45

45

⎡⎣ ⎤⎦

α

sin

cos

α

β

tg α

⎡⎣ ⎤⎦

β

46

44

47

43

48

42

49

41

50

0,7660

1,1918

40

51

1,2349

39

52

1,2799

38

53

37

54

1,3764

36

55

1,4281

35

56

1,4826

34

57

1,5399

33

58

32

59

1,6643

31

60

0,8660

1,7321

30

61

29

62

28

63

1,9626

27

64

26

65

2,1445

25

66

24

67

2,3559

23

68

2,4751

22

69

21

70

0,9397

2,7475

20

71

19

72

18

73

17

74

3,4874

16

75

3,7321

15

76

14

77

4,3315

13

78

12

79

5,1446

11

80

0,9848

5,6713

10

81

6,3138

9

82

7,1154

8

83

8,1443

7

84

9,5144

6

85

5

86

4

87

3

88

28,6363

2

89

1

90

1,0000

0

7$%/,&$:$572ĝ&,)81.&-,75<*2120(75<&=1<&+

background image
background image

3XEOLNDFMDZVSyá¿QDQVRZDQDSU]H]8QLĊ(XURSHMVNąZUDPDFK(XURSHMVNLHJR)XQGXV]X6SRáHF]QHJR
3XEOLNDFMDMHVWG\VWU\EXRZDQDEH]SáDWQLH

,6%1

2NUĊJRZD.RPLVMD(J]DPLQDF\MQDZ*GDĔVNX
XO1D6WRNX*GDĔVN
WHOID[
ZZZRNHJGDSOHPDLONRPLVMD#RNHJGDSO

2NUĊJRZD.RPLVMD(J]DPLQDF\MQDZàRG]L
XO3UDXVVDàyGĨ
WHOID[
ZZZRNHORG]SOHPDLONRPLVMD#NRPLVMDSO

2NUĊJRZD.RPLVMD(J]DPLQDF\MQDZ-DZRU]QLH
XO$GDPD0LFNLHZLF]D-DZRU]QR
WHOID[
ZZZRNHMDZSOHPDLORNH#RNHMDZSO

2NUĊJRZD.RPLVMD(J]DPLQDF\MQDZ3R]QDQLX
XO*URQRZD3R]QDĔ
WHOID[
ZZZRNHSR]QDQSOHPDLOVHNUHWDULDW#RNHSR]QDQSO

2NUĊJRZD.RPLVMD(J]DPLQDF\MQDZ.UDNRZLH
RV6]NROQH.UDNyZ
WHOID[
ZZZRNHNUDNRZSOHPDLORNH#RNHNUDNRZSO

2NUĊJRZD.RPLVMD(J]DPLQDF\MQDZ:DUV]DZLH
3ODF(XURSHMVNL:DUV]DZD
WHOID[
ZZZRNHZDZSOHPDLOLQIR#RNHZDZSO

2NUĊJRZD.RPLVMD(J]DPLQDF\MQDZàRPĪ\
$O/HJLRQyZàRPĪD
WHOID[
ZZZRNHORP]DSOHPDLOVHNUHWDULDW#RNHORP]DSO

2NUĊJRZD.RPLVMD(J]DPLQDF\MQDZH:URFáDZLX
XO=LHOLĔVNLHJR:URFáDZ
WHOID[
ZZZRNHZURFSOHPDLOVHNUHWDULDW#RNHZURFSO

&HQWUDOQD.RPLVMD(J]DPLQDF\MQD

XO-y]HID/HZDUWRZVNLHJR:DUV]DZD

WHOID[

ZZZFNHHGXSOHPDLOFNHVHNU#FNHHGXSO


Wyszukiwarka

Podobne podstrony:
Podstawowe wzory i tablice geometria figur płaskich
Podstawowe wzory i tablice geometria figur płaskich
Tablice oznaczenia i wzory
Wzory tabliczek rysunkowych
Niezgodziński M, T Niezgodziński T Wzory wykresy i tablice wytrzymałościowe wyd 9
5 Wzory i tablice
Przepisy, wzory, tablice
tablice do analizy konkur
TABLICE
Tablice Trwania ZyciaKonstruowanie
Algorytmy i struktury danych Wykład 3 i 4 Tablice, rekordy i zbiory
Tabliczka mnożenia

więcej podobnych podstron