6SLVWUHĞFL
:DUWRĞüEH]Z]JOĊGQDOLF]E\ ....................................................................................................................1
3RWĊJLLSLHUZLDVWNL ...................................................................................................................................1
/RJDU\WP\ ................................................................................................................................................2
6LOQLD:VSyáF]\QQLNGZXPLDQRZ\ .........................................................................................................2
:]yUGZXPLDQRZ\1HZWRQD ...................................................................................................................2
:]RU\VNUyFRQHJRPQRĪHQLD ...................................................................................................................3
&LąJL .........................................................................................................................................................3
)XQNFMDNZDGUDWRZD ................................................................................................................................4
*HRPHWULDDQDOLW\F]QD ..............................................................................................................................4
3ODQLPHWULD ...............................................................................................................................................6
6WHUHRPHWULD ...........................................................................................................................................12
7U\JRQRPHWULD ........................................................................................................................................14
.RPELQDWRU\ND .......................................................................................................................................16
5DFKXQHNSUDZGRSRGRELHĔVWZD .............................................................................................................17
3DUDPHWU\GDQ\FKVWDW\VW\F]Q\FK ..........................................................................................................18
*UDQLFDFLąJX ..........................................................................................................................................18
3RFKRGQDIXQNFML ....................................................................................................................................19
7DEOLFDZDUWRĞFLIXQNFMLWU\JRQRPHWU\F]Q\FK .......................................................................................20
3XEOLNDFMDZVSyá¿QDQVRZDQDSU]H]8QLĊ(XURSHMVNąZUDPDFK(XURSHMVNLHJR)XQGXV]X6SRáHF]QHJR
3XEOLNDFMDMHVWG\VWU\EXRZDQDEH]SáDWQLH
:DUV]DZD
ͣtLJďƌĂŶĞǁnjŽƌLJŵĂƚĞŵĂƚLJĐnjŶĞ͟ƵĚŽƐƚħƉŶŝĂŵLJnjĂnjŐŽĚČĞŶƚƌĂůŶĞũ<ŽŵŝƐũŝŐnjĂŵŝŶĂĐLJũŶĞũ͘
KĮĐLJŶĂĚƵŬĂĐLJũŶĂΎ<ƌnjLJƐnjƚŽĨWĂnjĚƌŽ
1
:$572ĝû%(=:=*/ĉ'1$/,&=%<
:DUWRĞüEH]Z]JOĊGQąOLF]E\U]HF]\ZLVWHMxGH¿QLXMHP\Z]RUHP
/LF]ED x MHVWWRRGOHJáRĞüQDRVLOLF]ERZHMSXQNWXxRGSXQNWX
'ODGRZROQHMOLF]E\xPDP\
x
x
x
x
=
−
0
0
0
wtedy i tylko wtedy, gdy
== x
'ODGRZROQ\FKOLF]ExyPDP\
3RQDGWRMHĞOLy ≠ 0WR
x
y
x
y
'ODGRZROQ\FKOLF]EaRUD]
PDP\
327ĉ*,,3,(5:,$67.,
1LHFKnEĊG]LHOLF]EąFDáNRZLWąGRGDWQLą'ODGRZROQHMOLF]E\aGH¿QLXMHP\MHMnWąSRWĊJĊ
a
a
a
n
n
= ⋅ ⋅
...
razy
3LHUZLDVWNLHPDU\WPHW\F]Q\P a
n
VWRSQLDn]OLF]E\a
QD]\ZDP\OLF]EĊb
WDNąĪH b
a
n
:V]F]HJyOQRĞFLGODGRZROQHMOLF]E\a]DFKRG]LUyZQRĞü a
a
2
JHĪHOL a orD]OLF]EDnMHVWQLHSDU]\VWDWR a
n
R]QDF]DOLF]EĊ b WDNąĪH b
a
n
3LHUZLDVWNLVWRSQLSDU]\VW\FK]OLF]EXMHPQ\FKQLHLVWQLHMą
1LHFKmnEĊGąOLF]EDPLFDáNRZLW\PLGRGDWQLPL'H¿QLXMHP\
1
m
n
n
m
a
a
−
=
1LHFKrsEĊGąGRZROQ\PLOLF]EDPLU]HF]\ZLVW\PL-HĞOL a ! Lb
> 0WR]DFKRG]ąUyZQRĞFL
⋅ =
+
⋅
=
a
a
a
a
a
a b
r
s
r s
r
s
r s
r
( )
⋅
( )
== ⋅
a b
r
r
r
r
r
a
a
b
b
⎛ ⎞ =
⎜ ⎟
⎝ ⎠
r
r s
s
a
a
a
−
=
-HĪHOLZ\NáDGQLNLrsVąOLF]EDPLFDáNRZLW\PLWRSRZ\ĪV]HZ]RU\RERZLą]XMąGODZV]\VWNLFK
OLF]Ea ≠ 0Lb ≠ 0
2
/2*$5<70<
/RJDU\WPHPlog
a
c GRGDWQLHMOLF]E\cSU]\GRGDWQLHMLUyĪQHMRGSRGVWDZLHaQD]\ZDP\Z\NáDGQLNb
SRWĊJLGRNWyUHMQDOHĪ\SRGQLHĞüaDE\RWU]\PDüc
log
wtedy i tylko wtedy, gdy
a
b
c
b
a
c
=
=
5yZQRZDĪQLH
a
c
a
c
log
'ODGRZROQ\FKOLF]Ex
> 0y > 0RUD]r]DFKRG]ąZ]RU\
log
log
log
log
log
log
a
a
a
a
r
a
x y
x
y
x
r
x
⋅
(
)
=
+
= ⋅
a
a
a
a
x
y
x
y
=
−
log
log
:]yUQD]DPLDQĊSRGVWDZ\ORJDU\WPX
MHĪHOL a
! a ≠ 1b > 0b ≠ 1RUD]c > 0WR
log
log
log
b
a
a
c
c
b
/RJDU\WP log
10
x PRĪQDWHĪ]DSLVDüMDNRORJx OXEOJx
6,/1,$:63Ïà&=<11,.':80,$12:<
6LOQLąOLF]E\FDáNRZLWHMGRGDWQLHMnQD]\ZDP\LORF]\QNROHMQ\FKOLF]EFDáNRZLW\FKRGGRnZáąF]QLH
n
n
!
...
= ⋅ ⋅ ⋅
1 2
3RQDGWRSU]\MPXMHP\XPRZĊĪH
'ODGRZROQHMOLF]E\FDáNRZLWHM
]DFKRG]L]ZLą]HN
= ⋅ +
(
)
n
+
(
)
1
1
! n
!
n
'ODOLF]EFDáNRZLW\FKnkVSHáQLDMąF\FKZDUXQNL
GH¿QLXMHP\ZVSyáF]\QQLNGZXPLDQRZ\
n
k
⎛
⎝
⎜
⎞
⎠
⎟
V\PERO1HZWRQD
n
k
n
k n k
⎛
⎝
⎜
⎞
⎠
⎟ =
−
(
)
=DFKRG]ąUyZQRĞFL
n
k
n
n k
⎛
⎝
⎜
⎞
⎠
⎟ =
−
⎛
⎝
⎜
⎞
⎠
⎟
n
n
n
0
1
⎛
⎝
⎜
⎞
⎠
⎟ =
⎛
⎝
⎜
⎞
⎠⎟
⎟ = 1
(
)(
) (
)
1
2 ...
1
!
n n
n
n k
n
k
k
−
− ⋅ ⋅ − +
⎛ ⎞
=
⎜ ⎟
⎝ ⎠
:=Ï5':80,$12:<1(:721$
'ODGRZROQHMOLF]E\FDáNRZLWHMGRGDWQLHMnRUD]GODGRZROQ\FKOLF]EabPDP\
a b
n
a
n
a
b
n
k
a
b
n
n
n
n
n
n k
k
+
(
)
= ⎛
⎝
⎜
⎞
⎠
⎟ +
⎛
⎝
⎜
⎞
⎠
⎟
+ + ⎛
⎝
⎜
⎞
⎠
⎟
+ +
−
−
−
0
1
1
...
...
1
1
1
⎛
⎝
⎜
⎞
⎠
⎟
+ ⎛
⎝
⎜
⎞
⎠
⎟
−
ab
n
n
b
n
n
3
:=25<6.5Ï&21(*2012ĩ(1,$
'ODGRZROQ\FKOLF]Eab
a b
a
ab b
a b
a
a b
ab
b
+
(
)
=
+
+
+
(
)
=
+
+
+
2
2
2
3
3
2
2
2
3
3
3
3
2
2
2
3
3
2
2
2
3
3
a b
a
ab b
a b
a
a b
ab
−
(
)
=
−
+
−
(
)
=
−
+
−− b
3
'ODGRZROQHMOLF]E\FDáNRZLWHMGRGDWQLHMnRUD]GRZROQ\FKOLF]Eab]DFKRG]LZ]yU
a
b
a b a
a
b
a
b
ab
b
n
n
n
n
n k
k
n
n
−
=
−
(
)
+
+ +
+ +
+
(
)
−
−
−
−
−
−
1
2
1
2
1
...
...
:V]F]HJyOQRĞFL
a
b
a b a b
a
a
a
b
2
2
2
3
3
1
1
1
−
=
−
(
)
+
(
)
− =
−
(
)
+
(
)
−
a
==
−
(
)
+
+
(
)
− =
−
(
)
+ +
(
)
+
=
+
(
)
a b a
ab b
a
a
a
a
b
a b a
2
2
3
2
3
3
1
1
1
a
2
2
2
3
2
1
1
1
−
+
(
)
+ =
+
(
)
− +
(
)
ab b
a
a
a
a
a
n
n
n
a
a
a
− =
−
(
)
+
+
−
−
1
1
1
2
....
+ +
(
)
a 1
&,Ą*,
&LąJDU\WPHW\F]Q\
:]yUQDnW\Z\UD]FLąJXDU\WPHW\F]QHJR a
n
( )
RSLHUZV]\PZ\UD]LHa
1
LUyĪQLF\r
a
a
n
r
n
= + −
(
)
1
1
:]yUQDVXPĊ S
a
a
a
n
n
= + + +
1
2
...
SRF]ąWNRZ\FKnZ\UD]yZFLąJXDU\WPHW\F]QHJR
S
a
a
n
a
n
r
n
n
n
= + ⋅ =
+ −
(
)
⋅
1
1
2
2
1
2
0LĊG]\VąVLHGQLPLZ\UD]DPLFLąJXDU\WPHW\F]QHJR]DFKRG]L]ZLą]HN
a
a
a
n
n
n
n
=
+
−
+
1
1
2
2
dla
&LąJJHRPHWU\F]Q\
:]yUQDnW\Z\UD]FLąJXJHRPHWU\F]QHJR a
n
( )
RSLHUZV]\PZ\UD]LHa
1
LLORUD]LHq
a
a q
n
n
n
= ⋅
−
1
1
2
dla
:]yUQDVXPĊ S
a
a
a
n
n
= + + +
1
2
...
SRF]ąWNRZ\FKnZ\UD]yZFLąJXJHRPHWU\F]QHJR
0LĊG]\VąVLHGQLPLZ\UD]DPLFLąJXJHRPHWU\F]QHJR]DFKRG]L]ZLą]HN
a
a
a
n
n
n
n
2
1
1
2
=
⋅
−
+
dla
3URFHQWVNáDGDQ\
-HĪHOLNDSLWDáSRF]ąWNRZ\K]áRĪ\P\QDnODWZEDQNXZNWyU\PRSURFHQWRZDQLHORNDWZ\QRVLpZVNDOL
URF]QHMLNDSLWDOL]DFMDRGVHWHNQDVWĊSXMHSRXSá\ZLHNDĪGHJRURNXWUZDQLDORNDW\WRNDSLWDáNRĔFRZ\ K
n
Z\UDĪDVLĊZ]RUHP
K
K
p
n
n
= ⋅ +
⎛
⎝⎜
⎞
⎠⎟
1
100
4
)81.&-$.:$'5$72:$
3RVWDüRJyOQDIXQNFMLNZDGUDWRZHM f x ax bx c a
x
R
( )
=
+ +
≠
∈
2
0
,
,
:]yUNDĪGHMIXQNFMLNZDGUDWRZHMPRĪQDGRSURZDG]LüGRSRVWDFLNDQRQLF]QHM
2
b
p
a
= −
4
q
a
Δ
= −
:\NUHVHPIXQNFMLNZDGUDWRZHMMHVWSDUDERODRZLHU]FKRáNXZSXQNFLHRZVSyáU]ĊGQ\FK
(
p,q
5DPLRQD
SDUDEROLVNLHURZDQHVąGRJyU\JG\ a ! GRGRáXJG\ a
/LF]EDPLHMVF]HURZ\FKIXQNFMLNZDGUDWRZHM f x ax bx c
( )
=
+ +
2
OLF]EDSLHUZLDVWNyZWUyMPLDQX
NZDGUDWRZHJROLF]EDU]HF]\ZLVW\FKUR]ZLą]DĔUyZQDQLD ax bx c
2
0
+ + = ]DOHĪ\RGZ\UyĪQLND Δ =
−
b
ac
2
4
± MHĪHOL
Δ < WRIXQNFMDNZDGUDWRZDQLHPDPLHMVF]HURZ\FKWUyMPLDQNZDGUDWRZ\QLHPDSLHUZLDVWNyZ
U]HF]\ZLVW\FKUyZQDQLHNZDGUDWRZHQLHPDUR]ZLą]DĔU]HF]\ZLVW\FK
– MHĪHOL
Δ = WRIXQNFMDNZDGUDWRZDPDGRNáDGQLHMHGQRPLHMVFH]HURZHWUyMPLDQNZDGUDWRZ\PDMHGHQ
SLHUZLDVWHNSRGZyMQ\UyZQDQLHNZDGUDWRZHPDGRNáDGQLHMHGQRUR]ZLą]DQLHU]HF]\ZLVWH
x
x
b
a
1
2
2
=
= −
± MHĪHOL
Δ > WRIXQNFMDNZDGUDWRZDPDGZDPLHMVFD]HURZHWUyMPLDQNZDGUDWRZ\PDGZDUyĪQH
SLHUZLDVWNLU]HF]\ZLVWHUyZQDQLHNZDGUDWRZHPDGZDUR]ZLą]DQLDU]HF]\ZLVWH
x
b
a
x
b
a
1
2
2
2
= − −
= − +
Δ
Δ
-HĞOL
0WRZ]yUIXQNFMLNZDGUDWRZHMPRĪQDGRSURZDG]LüGRSRVWDFLLORF]\QRZHM
f x
a x
x
x
x
( )
=
−
(
)
−
(
)
1
2
:]RU\9LpWH¶D
-HĪHOL
0WR
x
x
b
a
x x
c
a
1
2
1
2
+ = −
⋅ =
*(20(75,$$1$/,7<&=1$
2GFLQHN
'áXJRĞüRGFLQNDRNRĔFDFKZSXQNWDFK
A
x
y
B
x
y
A
A
=
(
)
=
(
)
,
,
,
B
B
MHVWGDQDZ]RUHP
AB
x
x
y
y
B
A
B
A
=
−
(
)
+
−
(
)
2
2
:VSyáU]ĊGQHĞURGNDRGFLQNDAB
x
x
y
y
A
B
A
B
+
+
⎛
⎝⎜
⎞
⎠⎟
2
2
,
x
y
O
A=(x
A
, y
A
)
B=(x
B
, y
B
)
5
:HNWRU\
:VSyáU]ĊGQHZHNWRUD AB
AB
x
x
y
y
B
A
B
A
=
−
−
[
]
,
-HĪHOL u
u u
v
v v
G
G
=
[
]
=
[
]
1
2
1
2
,
,
,
VąZHNWRUDPL]DĞaMHVWOLF]EąWR
u
v
u
v u
v
a u
a u a u
G G
G
+ =
+
+
[
]
⋅ = ⋅
⋅
[
1
1
2
2
1
2
,
,
]]
3URVWD
5yZQDQLHRJyOQHSURVWHM
Ax
By C
+
+ = 0,
JG]LH A
B
2
2
0
+
≠ WMZVSyáF]\QQLNLABQLHVąUyZQRF]HĞQLHUyZQH
-HĪHOLA = WRSURVWDMHVWUyZQROHJáDGRRVLOxMHĪHOLB = WRSURVWDMHVWUyZQROHJáDGRRVLOy
MHĪHOLC = WRSURVWDSU]HFKRG]LSU]H]SRF]ąWHNXNáDGXZVSyáU]ĊGQ\FK
-HĪHOLSURVWDQLHMHVWUyZQROHJáDGRRVLOyWRPDRQDUyZQDQLH
NLHUXQNRZH
y
ax b
=
+
/LF]EDaWRZVSyáF]\QQLNNLHUXQNRZ\SURVWHM
a
tg
=
α
:VSyáF]\QQLNbZ\]QDF]DQDRVLOySXQNWZNWyU\PGDQDSURVWDMąSU]HFLQD
5yZQDQLHNLHUXQNRZHSURVWHMRZVSyáF]\QQLNXNLHUXQNRZ\PaNWyUDSU]HFKRG]LSU]H]SXQNWP
x y
=
(
)
0
0
,
y
a x
x
y
=
−
(
)
+
5yZQDQLHSURVWHMNWyUDSU]HFKRG]LSU]H]GZDGDQHSXQNW\
(
)(
)
y
y
x
x
y
y
x
x
A
B
A
B
A
A
−
−
−
−
(
)
−
(
)
= 0
3URVWDLSXQNW
2GOHJáRĞüSXQNWXP
x y
=
(
)
0
0
,
RGSURVWHMRUyZQDQLXAx By C
+
+ = MHVWGDQDZ]RUHP
Ax
By
C
A
B
0
0
2
2
3DUDSURVW\FK
'ZLHSURVWHRUyZQDQLDFKNLHUXQNRZ\FK
y
a x b
y
a x b
=
+
=
+
1
1
2
2
VSHáQLDMąMHGHQ]QDVWĊSXMąF\FKZDUXQNyZ
± VąUyZQROHJáHJG\ a
a
1
2
± VąSURVWRSDGáHJG\ a a
1 2
1
= −
± WZRU]ąNąWRVWU\ φ Ltg
=
−
+
a
a
a a
1
2
1 2
1
φ
x
y
O
b
y
=
ax
+
b
Į
6
'ZLHSURVWHRUyZQDQLDFKRJyOQ\FK
A x
B y C
A x
B y C
1
1
1
2
2
2
0
0
+
+
=
+
+
=
± VąUyZQROHJáHJG\ A B
A B
1
2
2
1
0
−
=
± VąSURVtoSDGáHJG\ A A
B B
1
2
1
2
0
+
=
– WZRU]ąNąWRVWU\
φ L
tg
=
−
+
A B
A B
A A
B B
1
2
2
1
1
2
1
2
φ
7UyMNąW
3ROHWUyMNąWDABCRZLHU]FKRáNDFK A
x
y
B
x
y
C
x
y
A
A
B
B
C
C
=
(
)
=
(
)
=
(
)
,
,
,
,
,
MHVWGDQHZ]RUHP
P
x
x
y
y
y
=
−
y
x
x
ABC
B
A
C
A
B
A
C
A
Δ
(
)
−
(
)
−
−
(
)
−
(
)
1
2
ĝURGHNFLĊĪNRĞFLWUyMNąWDABCF]\OLSXQNWSU]HFLĊFLDMHJRĞURGNRZ\FKPDZVSyáU]ĊGQH
x
x
x
y
y
y
A
B
C
A
B
C
+
+
+
+
⎛
⎝⎜
⎞
⎠⎟
3
3
,
3U]HNV]WDáFHQLDJHRPHWU\F]QH
± SU]HVXQLĊFLHRZHNWRU u
a b
G
=
[ ]
,
SU]HNV]WDáFDSXQNW A
x y
=
( )
,
QDSXQNW A
x
a y b
'
,
=
+
+
(
)
± V\PHWULDZ]JOĊGHPRVLOxSU]HNV]WDáFDSXQNW A
x y
=
( )
,
QDSXQNW
A
x
y
'
,
=
−
(
)
± V\PHWULDZ]JOĊGHPRVLOySU]HNV]WDáFDSXQNW A
x y
=
( )
,
QDSXQNW
A
x y
'
,
= −
(
)
± V\PHWULDZ]JOĊGHPSXQNWX a b
,
( )
SU]HNV]WDáFDSXQNW A
x y
=
( )
,
QDSXQNW
A
a
x b
y
'
,
=
−
−
(
)
2
2
± MHGQRNáDGQRĞüRĞURGNXZSXQNFLHOLVNDOLV SU]HNV]WDáFDSXQNW AQDSXQNW
A'
WDNLĪH
OA
s OA
'
= ⋅
DZLĊFMHĞOL O
x y
=
(
)
0
0
,
WRMHGQRNáDGQRĞüWDSU]HNV]WDáFDSXQNW A
x y
=
( )
,
QDSXQNW
A
sx
s x sy
s y
'
,
=
+ −
(
)
+ −
(
)
(
)
1
1
0
0
5yZQDQLHRNUĊJX
5yZQDQLHRNUĊJXRĞURGNXZSXQNFLH S
a b
=
( )
,
LSURPLHQLXr>
x a
y b
r
−
(
)
+
−
(
)
=
2
2
2
OXE
3/$1,0(75,$
&HFK\SU]\VWDZDQLDWUyMNąWyZ
A
B
C
D
E
F
7
7RĪHGZDWUyMNąW\ABCLDEFVąSU]\VWDMąFH
Δ
≡ Δ
(
)
ABC
DEF
PRĪHP\VWZLHUG]LüQDSRGVWDZLHNDĪGHM
]QDVWĊSXMąF\FKFHFKSU]\VWDZDQLDWUyMNąWyZ
± FHFKDSU]\VWDZDQLDÄERN±ERN±ERN´
RGSRZLDGDMąFHVRELHERNLREXWUyMNąWyZPDMąWHVDPHGáXJRĞFL AB
DE
AC
DF
BC
EF
,
,
± FHFKDSU]\VWDZDQLDÄERN±NąW±ERN´
GZDERNLMHGQHJRWUyMNąWDVąUyZQHRGSRZLDGDMąF\PLPERNRPGUXJLHJRWUyMNąWDRUD]NąW]DZDUW\
PLĊG]\W\PLERNDPLMHGQHJRWUyMNąWDPDWDNąVDPąPLDUĊMDNRGSRZLDGDMąF\PXNąWGUXJLHJRWUyMNąWD
QS
AB
DE
AC
DF
BAC
EDF
,
,
)
)
± FHFKDSU]\VWDZDQLDÄNąW±ERN±NąW´
MHGHQERNMHGQHJRWUyMNąWDPDWĊVDPąGáXJRĞüFRRGSRZLDGDMąF\PXERNGUXJLHJRWUyMNąWD
RUD]PLDU\RGSRZLDGDMąF\FKVRELHNąWyZREXWUyMNąWyZSU]\OHJá\FKGRERNXVąUyZQH
QS AB
DE
BAC
EDF
ABC
DEF
,
,
)
)
)
)
&HFK\SRGRELHĔVWZDWUyMNąWyZ
7RĪHGZDWUyMNąW\ABCLDEFVąSRGREQH
Δ
Δ
(
)
ABC
DEF
PRĪHP\VWZLHUG]LüQDSRGVWDZLHNDĪGHM
]QDVWĊSXMąF\FKFHFKSRGRELHĔVWZDWUyMNąWyZ
± FHFKDSRGRELHĔVWZDÄERN±ERN±ERN´
GáXJRĞFLERNyZMHGQHJRWUyMNąWDVąSURSRUFMRQDOQHGRRGSRZLHGQLFKGáXJRĞFLERNyZGUXJLHJRWUyMNąWD
QS
AB
DE
AC
DF
BC
EF
± FHFKDSRGRELHĔVWZDÄERN±NąW±ERN´
GáXJRĞFLGZyFKERNyZMHGQHJRWUyMNąWDVąSURSRUFMRQDOQHGRRGSRZLHGQLFKGáXJRĞFLGZyFKERNyZ
GUXJLHJRWUyMNąWDLNąW\PLĊG]\W\PLSDUDPLERNyZVąSU]\VWDMąFHQS
± FHFKDSRGRELHĔVWZDÄNąW±NąW±NąW´
GZDNąW\MHGQHJRWUyMNąWDVąSU]\VWDMąFHGRRGSRZLHGQLFKGZyFKNąWyZGUXJLHJRWUyMNąWDZLĊFWHĪ
LWU]HFLHNąW\REXWUyMNąWyZVąSU]\VWDMąFH )
)
)
)
)
)
BAC
EDF
ABC
DEF
ACB
DFE
,
,
A
B
C
D
E
F
8
3U]\MPXMHP\R]QDF]HQLDZWUyMNąFLHABC
abc
±GáXJRĞFLERNyZOHĪąF\FKRGSRZLHGQLR
QDSU]HFLZNRZLHU]FKRáNyZABC
2 p = a + b + c
±REZyGWUyMNąWD
ĮȕȖ
±PLDU\NąWyZSU]\ZLHU]FKRáNDFKABC
h
a
h
b
h
c
±Z\VRNRĞFLRSXV]F]RQH]ZLHU]FKRáNyZ
ABC
Rr
±SURPLHQLHRNUĊJyZRSLVDQHJR
LZSLVDQHJR
7ZLHUG]HQLHVLQXVyZ
α
β
γ
A
C
B
a
b
c
Ȗ
ȕ
Į
A
C
D
c
a
b
h
c
B
Į
ȕ
Ȗ
7ZLHUG]HQLHFRVLQXVyZ
a
b
c
bc
b
a
c
ac
c
a
b
ab
2
2
2
2
2
2
2
2
2
2
2
2
=
+ −
=
+ −
=
+ −
cos
cos
cos
γ
β
α
:]RU\QDSROHWUyMNąWD
⋅
⋅
P
R
P
a h
b h
c h
P
a b
a c
ABC
a
b
c
ABC
∆
∆
=
⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅
=
⋅ ⋅
=
⋅ ⋅
=
1
2
1
2
1
2
1
2
1
2
1
sin
sin
2
1
2
1
2
1
2
2
2
2
b c
P
a
b
c
ABC
⋅ ⋅
=
⋅
=
⋅
=
sin
sin
sin
sin
sin
sin
sin
si
∆
n
n
sin
sin
sin
sin
⋅
=
=
⋅
P
abc
R
ABC
ABC
∆
∆
4
2
2
ssin
P
rp
P
p p a
p b
p c
ABC
ABC
∆
∆
=
=
−
(
)
−
(
)
−
(
)
α
α
α
γ
α
γ
β
β
β
γ
γ
α
β
γ
β
7ZLHUG]HQLH3LWDJRUDVDZUD]]WZLHUG]HQLHPRGZURWQ\PGRQLHJR
:WUyMNąFLHABCNąWȖMHVWSURVW\ZWHG\LW\ONRZWHG\JG\a
b
c
2
=ZLą]NLPLDURZHZWUyMNąFLHSURVWRNąWQ\P
=DáyĪP\ĪHNąWȖMHVWSURVW\:yZF]DV
h
AD DB
h
ab
c
a
c
c
a
b
b
R
c
r
c
c
2
1
1
2
=
⋅
=
= ⋅
= ⋅
= ⋅
= ⋅
=
=
sin
cos
tg
tg
a
a b c
p c
+ − = −
2
α
β
α
β
9
7UyMNąWUyZQRERF]Q\
a±GáXJRĞüERNX
h±Z\VRNRĞüWUyMNąWD
h
a
R
h
P
a
r
h
=
=
=
=
3
2
2
3
3
4
1
3
2
Δ
7ZLHUG]HQLH7DOHVDZUD]]WZLHUG]HQLHPRGZURWQ\PGRQLHJR
5yĪQHSURVWHACLBDSU]HFLQDMąVLĊZSXQNFLHPSU]\F]\PVSHáQLRQ\MHVWMHGHQ]ZDUXQNyZ
± SXQNWAOHĪ\ZHZQąWU]RGFLQNDPCRUD]SXQNWBOHĪ\ZHZQąWU]RGFLQNDPD
OXE
± SXQNWAOHĪ\QD]HZQąWU]RGFLQNDPCRUD]SXQNWBOHĪ\QD]HZQąWU]RGFLQNDPD
:yZF]DVSURVWHABLCDVąUyZQROHJáHZWHG\LW\ONRZWHG\JG\
PA
AC
PB
BD
&]ZRURNąW\
Trapez
&]ZRURNąWNWyU\PDFRQDMPQLHMMHGQąSDUĊERNyZ
UyZQROHJá\FK
:]yUQDSROHWUDSH]X
P
a b
h
= + ⋅
2
5yZQROHJáRERN
&]ZRURNąWNWyU\PDGZLHSDU\ERNyZ
UyZQROHJá\FK
:]RU\QDSROHUyZQROHJáRERNX
P
ah
a b
AC BD
=
= ⋅ ⋅
= ⋅
⋅
⋅
sin
sin
1
2
φ
α
C
B
A
a
h
a
a
B
A
C
D
P
D
B
C
P
A
A
B
C
D
b
a
h
h
a
D
C
B
A
b
ij
Į
Romb
&]ZRURNąWNWyU\PDZV]\VWNLHERNLMHGQDNRZHMGáXJRĞFL
:]RU\QDSROHURPEX
P
ah
a
AC BD
=
= ⋅
= ⋅
⋅
2
1
2
sin
α
'HOWRLG
&]ZRURNąWZ\SXNá\NWyU\PDRĞV\PHWULL]DZLHUDMąFąMHGQą
]SU]HNąWQ\FK
:]yUQDSROHGHOWRLGX
P
AC BD
= ⋅
⋅
1
2
.RáR
:]yUQDSROHNRáDRSURPLHQLXr
P
r
=
π
2
2EZyGNRáDRSURPLHQLXr
L
r
= 2
π
:\FLQHNNRáD
:]yUQDSROHZ\FLQNDNRáDRSURPLHQLXrLNąFLHĞURGNRZ\PĮ
Z\UDĪRQ\PZVWRSQLDFK
P
r
=
⋅
°
π
2
360
α
'áXJRĞüáXNXABZ\FLQNDNRáDRSURPLHQLXrLNąFLH
ĞURGNRZ\PĮZ\UDĪRQ\PZVWRSQLDFK
l
r
=
⋅
°
2
360
π
α
.ąW\ZRNUĊJX
0LDUDNąWDZSLVDQHJRZRNUąJMHVWUyZQDSRáRZLHPLDU\NąWD
ĞURGNRZHJRRSDUWHJRQDW\PVDP\PáXNX
0LDU\NąWyZZSLVDQ\FKZRNUąJRSDUW\FKQDW\PVDP\PáXNX
VąUyZQH
0LDU\NąWyZZSLVDQ\FKZRNUąJRSDUW\FKQDáXNDFKUyZQ\FK
VąUyZQH
r
O
B
A
A
C
D
B
r
O
A
C
B
D
Į
a
h
a
A
B
O
2
Į
Į
Į
Į
Į
11
7ZLHUG]HQLHRNąFLHPLĊG]\VW\F]QąLFLĊFLZą
A
C
B
O
A
C
B
O
'DQ\MHVWRNUąJRĞURGNXZSXQNFLHOLMHJRFLĊFLZDAB3URVWDACMHVWVW\F]QDGRWHJRRNUĊJXZSXQNFLHA
:WHG\ )
)
AOB
CAB
= ⋅
2
SU]\F]\PZ\ELHUDP\WHQ]NąWyZĞURGNRZ\FKAOBNWyU\MHVWRSDUW\QDáXNX
]QDMGXMąF\PVLĊZHZQąWU]NąWDCAB
7ZLHUG]HQLHRRGFLQNDFKVW\F]Q\FK
-HĪHOLVW\F]QHGRRNUĊJXZSXQNWDFKALBSU]HFLQDMąVLĊZSXQNFLHPWR
PA
PB
A
B
P
7ZLHUG]HQLHRRGFLQNDFKVLHF]QHMLVW\F]QHM
'DQHVąSURVWDSU]HFLQDMąFDRNUąJZSXQNWDFKALBRUD]SURVWDVW\F]QDGRWHJRRNUĊJXZSXQNFLHC-HĪHOL
SURVWHWHSU]HFLQDMąVLĊZSXQNFLHPWR
PA PB
PC
⋅
=
2
C
B
P
A
12
2NUąJRSLVDQ\QDF]ZRURNąFLH
C
D
A
B
Į
į
Ȗ
ȕ
2NUąJZSLVDQ\ZF]ZRURNąt
A
D
a
C
B
b
c
d
r
67(5(20(75,$
7ZLHUG]HQLHRWU]HFKSURVW\FKSURVWRSDGá\FK
P
m
l
k
3URVWDkSU]HELMDSáDV]F]\]QĊZSXQNFLHP.3URVWDlMHVWU]XWHPSURVWRNąWQ\PSURVWHMkQDWĊSáDV]F]\]QĊ
3URVWDmOHĪ\QDWHMSáDV]F]\ĨQLHLSU]HFKRG]LSU]H]SXQNWP
:yZF]DVSURVWDmMHVWSURVWRSDGáDGRSURVWHMkZWHG\LW\ONRZWHG\JG\MHVWSURVWRSDGáDGRSURVWHMl
1DF]ZRURNąFLHPRĪQDRSLVDüRNUąJZWHG\LW\ONRZWHG\
JG\VXP\PLDUMHJRSU]HFLZOHJá\FKNąWyZZHZQĊWU]Q\FKVą
UyZQH
+ = + = 180
α
γ
β
δ
:F]ZRURNąWZ\SXNá\PRĪQDZSLVDüRNUąJZWHG\LW\ONR
ZWHG\JG\VXP\GáXJRĞFLMHJRSU]HFLZOHJá\FKERNyZVą
UyZQH
a
c
b
d
+ = +
13
3U]\MPXMHP\R]QDF]HQLD
P ±SROHSRZLHU]FKQLFDáNRZLWHM
P
p
±SROHSRGVWDZ\
P
b
±SROHSRZLHU]FKQLERF]QHM
V
±REMĊWRĞü
3URVWRSDGáRĞFLDQ
P
ab bc
ac
V
abc
=
+ +
(
)
=
2
JG]LHabcVąGáXJRĞFLDPLNUDZĊG]L
SURVWRSDGáRĞFLDQX
*UDQLDVWRVáXSSURVW\
P
p h
V
P h
b
p
=
⋅
=
⋅
2
JG]LHpMHVWREZRGHPSRGVWDZ\JUDQLDVWRVáXSD
2VWURVáXS
V
P h
p
=
⋅
1
3
JG]LHhMHVWZ\VRNRĞFLąRVWURVáXSD
b
E
B
F
C
G
D
A
H
a
c
A
B
C
D
E
F
G
H
I
J
h
B
A
E
D
S
C
O
h
14
:DOHF
P
rh
P
r r
h
V
r h
b
=
=
+
(
)
=
2
2
2
π
π
π
JG]LHrMHVWSURPLHQLHPSRGVWDZ\h±Z\VRNRĞFLą
ZDOFD
6WRĪHN
P
rl
P
r r
l
V
r h
b
=
=
+
(
)
=
π
π
π
1
3
2
JG]LHrMHVWSURPLHQLHPSRGVWDZ\h±Z\VRNRĞFLą
l±GáXJRĞFLąWZRU]ąFHMVWRĪND
.XOD
P
r
V
r
=
=
4
4
3
2
3
π
π
JG]LHrMHVWSURPLHQLHPNXOL
75<*2120(75,$
'H¿QLFMHIXQNFMLWU\JRQRPHWU\F]Q\FKNąWDRVWUHJRZWUyMNąFLHSURVWRNąWQ\P
n
s
s
c
=
=
=
=
si
in
co
os
=
a
c
b
c
b
c
a
c
a
b
tg
tg
=
b
a
α
α
α
β
β
β
h
r
O
l
r
h
O
S
r
O
C
A
B
a
b
c
Į
ȕ
15
'H¿QLFMHIXQNFMLWU\JRQRPHWU\F]Q\FK
si
gdzie
jest
n
cos
,
=
=
=
≠
y
r
x
r
y
x
x
tg
gdy
promieniem wodzącym pu
0
nktu
M
2
2
0
r
x
y
=
+
>
α
α
α
:\NUHV\IXQNFMLWU\JRQRPHWU\F]Q\FK
2
ʌ
x
y
1
1
í
0
ʌ
3
2
ʌ
2
ʌ
í
ʌ
í
2ʌ
x
y
1
1
í
0
2
ʌ
ʌ
3
2
ʌ
2
ʌ
í
ʌ
í
2ʌ
x
y
1
1
í
0
2
ʌ
ʌ
3
2
ʌ
2
ʌ
í
ʌ
í
2ʌ
2
í
3
í
4
í
2
3
4
y = sin x
y = cos x
y = tg x
=ZLą]NLPLĊG]\IXQNFMDPLWHJRVDPHJRNąWD
=
≠
sin
cos
sin
cos
,
2
2
1
2
π
π
+
=
+
tg
dla
k
k
całkowite
−
α
α
α
α
α
α
1LHNWyUHZDUWRĞFLIXQNFMLWU\JRQRPHWU\F]Q\FK
Į
°
°
45°
°
°
π
6
π
4
π
3
π
2
VLQ
Į
1
2
2
2
3
2
1
FRV
Į
1
3
2
2
2
1
2
WJ
Į
3
3
1
3
QLH
LVWQLHMH
M = (x, y)
x
x
y
O
r
y
Į
16
)XQNFMHVXP\LUyĪQLF\NąWyZ
'ODGRZROQ\FKNąWyZ
Įȕ
]DFKRG]ąUyZQRĞFL
sin
sin
cos
cos sin
sin
sin
cos
cos sin
cos
+
(
)
=
+
−
(
)
=
−
+
((
)
=
−
−
=
+
cos
cos
sin
sin
cos
cos
cos
sin
sin
α
α
α
α
β
β
β
β
β
α
α
β
β
α
α
β
β
α
α
α
α β
β
β
(
)
3RQDGWRPDP\UyZQRĞFL
tg
tg
tg
tg
tg
tg
tg
tg
tg
tg
+
(
)
=
+
−
⋅
−
(
)
=
−
+
⋅
1
1
β
α
α
α
α
β
β
β
β
α
α
β
NWyUH]DFKRG]ą]DZV]HJG\VąRNUHĞORQHLPLDQRZQLNSUDZHMVWURQ\QLHMHVW]HUHP
)XQNFMHSRGZRMRQHJRNąWD
sin
sin
cos
cos
cos
sin
cos
sin
2
2
2
2
1 1 2
2
2
2
2
2
=
=
−
=
− = −
= 2
tg
tg
1
2
− tg
α
α
α
α
α
α
α
α
α
α
α
6XP\UyĪQLFHLLORF]\Q\IXQNFMLWU\JRQRPHWU\F]Q\FK
sin
sin
sin
cos
sin
sin
cos(
) cos(
)
si
(
)
+
=
+
−
= −
+
−
−
2
2
2
1
2
n
n
sin
cos
sin
cos
cos
cos(
) cos(
)
cos
(
)
−
=
+
−
=
+
+
−
2
2
2
1
2
++
=
+
−
=
+
+
−
−
cos
cos
cos
sin
cos
sin(
) sin(
)
cos
c
(
)
2
2
2
1
2
o
os
sin
sin
= −
+
−
2
2
2
α
α
α
α
α
α
α
α
α
α
α
α
α
α
α
α
α
α
α
α
α
β
β
β
β
β
β
β
β
β
β
β
β
β
β
β
β
β
β
β
β
β
:\EUDQHZ]RU\UHGXNF\MQH
α
α
α
α
α
α
α
α
α
α
α
α
α
α
α
α
α
α
α
α
2NUHVRZRĞüIXQNFMLWU\JRQRPHWU\F]Q\FK
sin
sin
cos
cos
+ ⋅
°
(
)
=
+ ⋅
°
(
)
=
+ ⋅
k
k
k
360
360
180
tg
°°
(
)
= tg – całkowite
,
k
α
α
α
α
α
α
.20%,1$725<.$
:DULDFMH]SRZWyU]HQLDPL
/LF]EDVSRVREyZQDNWyUH]nUyĪQ\FKHOHPHQWyZPRĪQDXWZRU]\üFLąJVNáDGDMąF\VLĊ]kQLHNRQLHF]QLH
UyĪQ\FKZ\UD]yZMHVWUyZQDn
k
:DULDFMHEH]SRZWyU]HĔ
/LF]EDVSRVREyZQDNWyUH]nUyĪQ\FKHOHPHQWyZPRĪQDXWZRU]\üFLąJVNáDGDMąF\VLĊ]
UyĪQ\FKZ\UD]yZMHVWUyZQD
n n
n k
n
n k
⋅ −
(
)
⋅ ⋅ − +
(
)
=
−
(
)
1
1
...
!
!
17
3HUPXWDFMH
/LF]EDVSRVREyZQDNWyUHnn UyĪQ\FKHOHPHQWyZPRĪQDXVWDZLüZFLąJMHVWUyZQDn
.RPELQDFMH
/LF]EDVSRVREyZQDNWyUHVSRĞUyGnUyĪQ\FKHOHPHQWyZPRĪQDZ\EUDü
0
HOHPHQWyZMHVWUyZQD
n
k
⎛
⎝
⎜
⎞
⎠
⎟
5$&+81(.35$:'232'2%,(ē67:$
:áDVQRĞFLSUDZGRSRGRELHĔVWZD
7ZLHUG]HQLH.ODV\F]QDGH¿QLFMDSUDZGRSRGRELHĔVWZD
1LHFKȍEĊG]LHVNRĔF]RQ\P]ELRUHPZV]\VWNLFK]GDU]HĔHOHPHQWDUQ\FK-HĪHOLZV]\VWNLH]GDU]HQLD
MHGQRHOHPHQWRZHVąMHGQDNRZRSUDZGRSRGREQHWRSUDZGRSRGRELHĔVWZR]GDU]HQLD
A
⊂ Ω
MHVWUyZQH
P A
A
( )
= Ω
JG]LH A R]QDF]DOLF]EĊHOHPHQWyZ]ELRUXA]DĞ
Ω ±OLF]EĊHOHPHQWyZ]ELRUXȍ
3UDZGRSRGRELHĔVWZRZDUXQNRZH
1LHFKA, BEĊGą]GDU]HQLDPLORVRZ\PL]DZDUW\PLZȍSU]\F]\P P B
( )
> 3UDZGRSRGRELHĔVWZHP
ZDUXQNRZ\P P A B
|
(
)
QD]\ZDP\OLF]EĊ
P A B
P A
B
P B
|
(
)
=
∩
(
)
( )
7ZLHUG]HQLHRSUDZGRSRGRELHĔVWZLHFDáNRZLW\P
-HĪHOL]GDU]HQLDORVRZH B B
B
n
1
2
,
,
,
!
]DZDUWHZȍVSHáQLDMąZDUXQNL
B B
B
n
1
2
,
,
,
!
VąSDUDPLUR]áąF]QHW]Q B
B
i
j
∩
= ∅ GOD
B
B
B
n
1
2
∪
∪ ∪
=
!
Ω
,
P B
i
n
i
( )
> 0
1
dla
,
WRGODNDĪGHJR]GDU]HQLDORVRZHJRA]DZDUWHJRZȍ]DFKRG]LUyZQRĞü
P A
P A B
P B
P A B
P B
P A B
P B
n
n
( )
=
(
)
⋅
( )
+
(
)
⋅
( )
+ +
(
)
⋅
( )
|
|
|
1
1
2
2
!
18
3$5$0(75<'$1<&+67$7<67<&=1<&+
ĝUHGQLDDU\WPHW\F]QD
ĝUHGQLDDU\WPHW\F]QDnOLF]Ea
1
a
2
a
n
MHVWUyZQD
a
a
a
a
n
n
= + + +
1
2
...
ĝUHGQLDZDĪRQD
ĝUHGQLDZDĪRQDnOLF]Ea
1
a
2
a
n
NWyU\PSU]\SLVDQRGRGDWQLHZDJL±RGSRZLHGQLRw
1
w
2
w
n
MHVW
UyZQD
w a
w a
w a
w
w
w
n
n
n
1
1
2
2
1
2
⋅ +
⋅ + +
⋅
+
+ +
...
...
ĝUHGQLDJHRPHWU\F]QD
ĝUHGQLDJHRPHWU\F]QDnQLHXMHPQ\FKOLF]Ea
1
a
2
a
n
MHVWUyZQD
a a
a
n
n
1
2
...
0HGLDQD
0HGLDQąXSRU]ąGNRZDQHJRZNROHMQRĞFLQLHPDOHMąFHM]ELRUXnGDQ\FKOLF]ERZ\FKa
a
a
a
n
1
2
3
...
MHVW
± GODnQLHSDU]\VW\FK
a
n
+1
2
ĞURGNRZ\Z\UD]FLąJX
± GODnSDU]\VW\FK
1
2
2
2
1
a
a
n
n
+
(
)
+
ĞUHGQLDDU\WPHW\F]QDĞURGNRZ\FKZ\UD]yZFLąJX
:DULDQFMDLRGFK\OHQLHVWDQGDUGRZH
:DULDQFMąnGDQ\FKOLF]ERZ\FKa
1
a
2
a
n
RĞUHGQLHMDU\WPHW\F]QHM a MHVWOLF]ED
σ
2
1
2
2
2
2
1
2
2
2
2
2
=
−
(
)
+
−
(
)
+ +
−
(
)
=
+ + +
−
( )
a
a
a
a
a
a
n
a
a
a
n
a
n
n
...
...
2GFK\OHQLHVWDQGDUGRZH
ı
MHVWSLHUZLDVWNLHPNZDGUDWRZ\P]ZDULDQFML
*5$1,&$&,Ą*8
*UDQLFDVXP\UyĪQLF\LORF]\QXLLORUD]XFLąJyZ
'DQHVąFLąJL a
b
n
n
( ) ( )
i
RNUHĞORQHGODn 1
-HĪHOLlim
n
n
a
a
→∞
= RUD]lim
n
n
b
b
→∞
= WR
lim
lim
lim
n
n
n
n
n
n
n
a
b
a b
a
b
a b
→∞
→∞
+
(
)
= +
−
(
)
= −
→
→∞
⋅
(
)
= ⋅
a b
a b
n
n
-HĪHOLSRQDGWRb
n
≠ 0 GODn RUD]b ≠ 0WR
lim
n
n
n
a
b
a
b
→∞
=
19
6XPDZ\UD]yZQLHVNRĔF]RQHJRFLąJXJHRPHWU\F]QHJR
'DQ\MHVWQLHVNRĔF]RQ\FLąJJHRPHWU\F]Q\ a
n
( )
,RNUHĞORQ\GODn
1
RLORUD]LHq
1LHFK S
n
( )
R]QDF]DFLąJVXPSRF]ąWNRZ\FKZ\UD]yZFLąJX a
n
( )
WR]QDF]\FLąJRNUHĞORQ\Z]RUHP
S
a
a
a
n
n
= + + +
1
2
...
GODn 1-HĪHOL q 1WRFLąJ S
n
( )
PDJUDQLFĊ
S
S
a
q
n
n
=
=
−
→∞
lim
1
1
7ĊJUDQLFĊQD]\ZDP\VXPąZV]\VWNLFKZ\UD]yZFLąJX a
n
( )
32&+2'1$)81.&-,
3RFKRGQDVXP\UyĪQLF\LORF]\QXLLORUD]XIXQNFML
c f x
c f
x
c
R
f x
g x
f
x
g x
f x
⋅
( )
⎡⎣
⎤⎦′ = ⋅ ′
( )
∈
( )
+
( )
⎡⎣
⎤⎦′ = ′
( )
+ ′
( )
( )
−
dla
g
g x
f
x
g x
f x
g x
f
x
g x
f x
g x
( )
⎡⎣
⎤⎦′ = ′
( )
− ′
( )
( )
⋅
( )
⎡⎣
⎤⎦′ = ′
( )
⋅
( )
+
( )
⋅ ′
( )
ff x
g x
f
x
g x
f x
g x
g x
g x
( )
( )
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
′
=
′
( )
⋅
( )
−
( )
⋅ ′
( )
( )
⎡⎣
⎤⎦
(
2
, gdy
))
≠ 0
3RFKRGQHQLHNWyU\FKIXQNFML
1LHFKabcEĊGąGRZROQ\PLOLF]EDPLU]HF]\ZLVW\PLnGRZROQąOLF]EąFDáNRZLWą
IXQNFMD
SRFKRGQDIXQNFML
f x
c
( )
=
′
( )
=
f
x
f x
ax b
( )
=
+
′
( )
=
f
x
a
f x
ax
bx c
( )
=
+ +
2
′
( )
=
+
f
x
ax b
2
f x
a
x
( )
=
, x
≠ 0
′
( )
=
−
f
x
a
x
2
f x
x
n
( )
=
′
( )
=
−
f
x
nx
n 1
5yZQDQLHVW\F]QHM
-HĪHOLIXQNFMDfPDSRFKRGQąZSXQNFLHx
WRUyZQDQLHVW\F]QHMGRZ\NUHVXIXQNFMLfZSXQNFLH
x
f x
0
0
,
( )
(
)
GDQHMHVWZ]RUHP
y
ax b
=
+
,
JG]LHZVSyáF]\QQLNNLHUXQNRZ\VW\F]QHMMHVWUyZQ\ZDUWRĞFLSRFKRGQHMIXQNFMLfZSXQNFLHx
WR]QDF]\
a
f
x
= ′
( )
QDWRPLDVW
b
f x
f
x
x
=
( )
− ′
( )
⋅
5yZQDQLHVW\F]QHMPRĪHP\]DSLVDüZSRVWDFL
y
f
x
x
x
f x
= ′
( )
⋅ −
(
)
+
( )
⎡⎣ ⎤⎦
α
sin
cos
α
β
tg α
⎡⎣ ⎤⎦
β
0
0,0000
0,0000
90
1
89
2
88
3
87
4
86
5
85
6
84
7
83
8
82
9
81
10
0,1736
0,1763
80
11
79
12
78
13
77
14
76
15
75
16
74
17
73
18
72
19
71
20
0,3420
0,3640
70
21
69
22
68
23
67
24
66
25
65
26
64
27
63
28
62
29
61
30
0,5000
0,5774
60
31
59
32
58
33
57
34
56
35
55
36
54
37
53
38
52
39
51
40
0,6428
0,8391
50
41
49
42
48
43
47
44
46
45
45
⎡⎣ ⎤⎦
α
sin
cos
α
β
tg α
⎡⎣ ⎤⎦
β
46
44
47
43
48
42
49
41
50
0,7660
1,1918
40
51
1,2349
39
52
1,2799
38
53
37
54
1,3764
36
55
1,4281
35
56
1,4826
34
57
1,5399
33
58
32
59
1,6643
31
60
0,8660
1,7321
30
61
29
62
28
63
1,9626
27
64
26
65
2,1445
25
66
24
67
2,3559
23
68
2,4751
22
69
21
70
0,9397
2,7475
20
71
19
72
18
73
17
74
3,4874
16
75
3,7321
15
76
14
77
4,3315
13
78
12
79
5,1446
11
80
0,9848
5,6713
10
81
6,3138
9
82
7,1154
8
83
8,1443
7
84
9,5144
6
85
5
86
4
87
3
88
28,6363
2
89
1
90
1,0000
–
0
7$%/,&$:$572ĝ&,)81.&-,75<*2120(75<&=1<&+
3XEOLNDFMDZVSyá¿QDQVRZDQDSU]H]8QLĊ(XURSHMVNąZUDPDFK(XURSHMVNLHJR)XQGXV]X6SRáHF]QHJR
3XEOLNDFMDMHVWG\VWU\EXRZDQDEH]SáDWQLH
,6%1
2NUĊJRZD.RPLVMD(J]DPLQDF\MQDZ*GDĔVNX
XO1D6WRNX*GDĔVN
WHOID[
ZZZRNHJGDSOHPDLONRPLVMD#RNHJGDSO
2NUĊJRZD.RPLVMD(J]DPLQDF\MQDZàRG]L
XO3UDXVVDàyGĨ
WHOID[
ZZZRNHORG]SOHPDLONRPLVMD#NRPLVMDSO
2NUĊJRZD.RPLVMD(J]DPLQDF\MQDZ-DZRU]QLH
XO$GDPD0LFNLHZLF]D-DZRU]QR
WHOID[
ZZZRNHMDZSOHPDLORNH#RNHMDZSO
2NUĊJRZD.RPLVMD(J]DPLQDF\MQDZ3R]QDQLX
XO*URQRZD3R]QDĔ
WHOID[
ZZZRNHSR]QDQSOHPDLOVHNUHWDULDW#RNHSR]QDQSO
2NUĊJRZD.RPLVMD(J]DPLQDF\MQDZ.UDNRZLH
RV6]NROQH.UDNyZ
WHOID[
ZZZRNHNUDNRZSOHPDLORNH#RNHNUDNRZSO
2NUĊJRZD.RPLVMD(J]DPLQDF\MQDZ:DUV]DZLH
3ODF(XURSHMVNL:DUV]DZD
WHOID[
ZZZRNHZDZSOHPDLOLQIR#RNHZDZSO
2NUĊJRZD.RPLVMD(J]DPLQDF\MQDZàRPĪ\
$O/HJLRQyZàRPĪD
WHOID[
ZZZRNHORP]DSOHPDLOVHNUHWDULDW#RNHORP]DSO
2NUĊJRZD.RPLVMD(J]DPLQDF\MQDZH:URFáDZLX
XO=LHOLĔVNLHJR:URFáDZ
WHOID[
ZZZRNHZURFSOHPDLOVHNUHWDULDW#RNHZURFSO
&HQWUDOQD.RPLVMD(J]DPLQDF\MQD
XO-y]HID/HZDUWRZVNLHJR:DUV]DZD
WHOID[
ZZZFNHHGXSOHPDLOFNHVHNU#FNHHGXSO