Materiały pomocnicze do ćwiczenia projektowego z przedmiotu: ROBOTY ZIEMNE
- 1 -
TABELA ROBÓT ZIEMNYCH
MIEJSCA ZEROWE ROBÓT ZIEMNYCH
1. Dane ogólne
W trakcie obliczania powierzchni robót ziemnych należy w tabeli robót ziemnych podać
punkty zerowe, tzn. podać odległości, w których kończy się nasyp a zaczyna się wykop, bądz
odwrotnie - kończy się wykop a zaczyna nasyp.
Rys. 1.1. Punkt zerowy na profilu podłużnym trasy
Jeżeli w dwóch sąsiednich przekrojach poprzecznych występują powierzchni różnoimienne,
tzn., że w jednym przekroju występuje tylko powierzchni nasypu, a w drugim tylko powierzchni
wykopu, dwa sąsiednie przekroje poprzeczne są przekrojami odcinkowymi, tzn., że w pierwszym
przekroju występuje: powierzchnia wykopu W1 oraz nasypu N1, a w drugim przekroju: W2 oraz N2,
a następnie zachodzi nierówność: W1 > N1 oraz N2 > W2, lub na odwrót, to między tymi dwoma
przekrojami musi być taki przekrój poprzeczny, w którym powierzchnia nasypu równa
się powierzchni przekopu: N = W. Jest to tzw. miejsce zerowych robót ziemnych, które leży
bezpośrednio na terenie, bo jest to przekrój odcinkowy o małych robotach ziemnych,
wyrównywanych na miejscu.
2. Wyznaczanie przekroju zerowego robót ziemnych
W celu znalezienia przekroju zerowego zakłada się liniową zmienność powierzchni
przekrojów poprzecznych na rozpatrywanym odcinku między dwoma przekrojami poprzecznymi.
y
x
x
L
Rys. 2.1. Szkic pomocniczy do wyznaczenia miejsca zerowego
Poszukiwaną odległość przekroju zerowego x oraz powierzchnię przekroju poprzecznego:
N = W można wyznaczyć wychodząc z równań dwóch prostych lub korzystając z metody graficznej.
1
2
W
N
1
2
N
N=W
W
Materiały pomocnicze do ćwiczenia projektowego z przedmiotu: ROBOTY ZIEMNE
- 2 -
Przykładowa tabela robót ziemnych
wraz z wyznaczeniem miejsca zerowego
Materiały pomocnicze do ćwiczenia projektowego z przedmiotu: ROBOTY ZIEMNE
- 3 -
Przykład wykorzystania metody analitycznej do wyznaczenia miejsca zerowego
1. Równania prostych:
a) równanie linii nasypów: y = a1 Å" x + b1 ,
b) równanie linii wykopów: y = a Å" x + b2 .
2
2. Warunki brzegowe:
x = 0 y = b1 = N1; y = b2 = W1
x = L N2 = a1 Å" L + b1 N2 = a1 Å" L + N1
W2 = a Å" L + b2 W2 = a Å" L + W1
2 2
3. Współczynniki a:
N2 - N1 W2 - W1
a1 = ; a2 =
L L
4. Ostateczne równania prostych:
N2 - N1
a) równanie linii nasypów: y = Å" x + N1 ,
L
W2 - W1
b) równanie linii wykopów: y = Å" x + W1 .
L
W punkcie zerowym obie rzędne są sobie równe:
N2 - N1 W2 - W1
Å" x + N1 = Å" x + W1 ,
L L
N2
ëÅ‚ - N1 W2 - W1
öÅ‚
- Å" x = W1 - N1
ìÅ‚ ÷Å‚
L L
íÅ‚ Å‚Å‚
Odległość punktu zerowego robót ziemnych x wynosi:
(W1 - N1)Å" L (10,2 - 0,0)Å" 50,10
x = x = = 32,76 m .
N2 - N1 - W2 + W1 5,9 - 0,0 - 0,5 +10,2
Powierzchnia przekroju poprzecznego N=W wynosi:
N2 - N1 5,9 - 0,0
N = W = y = Å" x + N1 = Å" 32,76 + 0,0 = 3,9 m2 ,
L 50,10
lub
W2 - W1 0,5 -10,2
N = W = y = Å" x + W1 = Å" 32,76 +10,2 = 3,9 m2 .
L 50,10
Oznaczenia jak na rys. 2.1.
Wyszukiwarka
Podobne podstrony:
tabela robot ziemnych06 Kania M M i inni Katastrofa kolektora sanitarnego spowodowana osuwiskiem podczas robot ziemnychTabela mas ziemnychmetody robót ziemnychProjektowanie robót ziemnych i transpwykonanie robót ziemnych (wykopy)Operator sprzętu do robót ziemnych?3204Zasady przedmiarowania robot ziemnych rozdzial 3 2 1Maszyny do robót ziemnychTabela obsiewuProjektowanie robót budowlanych w obiektach zabytkowychSpecyfikacje techniczne wykonania i odbioru robóttabela okruchowe6 Zapytania i działania na tabelachwięcej podobnych podstron