ch9


Chapter Nine
Taylor and Laurent Series
9.1. Taylor series. Suppose f is analytic on the open disk z ?ð z0 <ð r. Let z be any point in
| |
this disk and choose C to be the positively oriented circle of radius _ð, where
z ?ð z0 <ð _ð <ð r. Then for sOðC we have
| |

z ?ð z0
Å»ð Þðj
1 1 1 1z?ðz
=ð =ð

0
s ?ð z s ?ð z0 1 ?ð s?ðz0 =ð
Å»ðs ?ð z0Þð ?ð Å»ðz ?ð z0Þð
s ?ð z0
Å»ð Þðj+ð1
j=ð0
z?ðz0
since <ð 1. The convergence is uniform, so we may integrate
| |
s?ðz0

fÅ»ðsÞð fÅ»ðsÞð
ds =ð ds Å»ðz ?ð z0Þðj,or
Xð >ð Xð
s ?ð z
Å»ðs ?ð z0Þðj+ð1
j=ð0
C C

fÅ»ðsÞð fÅ»ðsÞð
1 1
fÅ»ðzÞð =ð ds =ð ds Å»ðz ?ð z0Þðj.
Xð >ð Xð
s ?ð z
2^ði 2^ði
s ?ð z0
Å»ð Þðj+ð1
j=ð0
C C
We have thus produced a power series having the given analytic function as a limit:

fÅ»ðzÞð =ð cjÅ»ðz ?ð z0Þðj, z ?ð z0 <ð r,
| |

j=ð0
where
fÅ»ðsÞð
1
cj =ð ds.

2^ði
Å»ðs ?ð z0Þðj+ð1
C
This is the celebrated Taylor Series for f at z =ð z0.
We know we may differentiate the series to get

fvðÅ»ðzÞð =ð jcjÅ»ðz ?ð z0Þðj?ð1

j=ð1
9.1
and this one converges uniformly where the series for f does. We can thus differentiate
again and again to obtain

fÅ»ðnÞðÅ»ðzÞð =ð jÅ»ðj ?ð 1ÞðÅ»ðj ?ð 2Þðuð Å»ðj ?ð n +ð 1ÞðcjÅ»ðz ?ð z0Þðj?ðn.

j=ðn
Hence,
fÅ»ðnÞðÅ»ðz0Þð =ð n!cn, or
fÅ»ðnÞðÅ»ðz0Þð
cn =ð .
n!
But we also know that
fÅ»ðsÞð
1
cn =ð ds.

2^ði
Å»ðs ?ð z0Þðn+ð1
C
This gives us
fÅ»ðsÞð
n!
fÅ»ðnÞðÅ»ðz0Þð =ð ds, for n =ð 0, 1, 2, uð .

2^ði
Å»ðs ?ð z0Þðn+ð1
C
This is the famous Generalized Cauchy Integral Formula. Recall that we previously
derived this formula for n =ð 0 and 1.
What does all this tell us about the radius of convergence of a power series? Suppose we
have

fÅ»ðzÞð =ð cjÅ»ðz ?ð z0Þðj,

j=ð0
and the radius of convergence is R. Then we know, of course, that the limit function f is
analytic for z ?ð z0 <ð R. We showed that if f is analytic in z ?ð z0 <ð r, then the series
| | | |
converges for z ?ð z0 <ð r. Thus r ²ð R, and so f cannot be analytic at any point z for which
| |
z ?ð z0 >ð R. In other words, the circle of convergence is the largest circle centered at z0
| |
inside of which the limit f is analytic.
9.2
Example
Let fÅ»ðzÞð =ð expÅ»ðzÞð =ð ez. Then fÅ»ð0Þð =ð fvðÅ»ð0Þð =ðuð =ð fÅ»ðnÞðÅ»ð0Þð =ðuð =ð 1, and the Taylor series for f
at z0 =ð 0is

1
ez =ð zj

j!
j=ð0
and this is valid for all values of z since f is entire. (We also showed earlier that this
particular series has an infinite radius of convergence.)
Exercises
1. Show that for all z,

1
ez =ð e Å»ðz ?ð 1Þðj.

j!
j=ð0
n
2. What is the radius of convergence of the Taylor series >ð cjzj for tanh z ?
j=ð0
3. Show that

Å»ðz ?ð iÞðj
1


1 ?ð z
Å»ð1 ?ð iÞðj+ð1
j=ð0
for z ?ð i <ð 2 .
| |
1
4. If fÅ»ðzÞð =ð , what is fÅ»ð10ÞðÅ»ðiÞð ?
1?ðz
5. Suppose f is analytic at z =ð 0 and fÅ»ð0Þð =ð fvðÅ»ð0Þð =ð fvðvðÅ»ð0Þð =ð 0. Prove there is a function g
analytic at 0 such that fÅ»ðzÞð =ð z3gÅ»ðzÞð in a neighborhood of 0.
6. Find the Taylor series for fÅ»ðzÞð =ð sin z at z0 =ð 0.
7. Show that the function f defined by
9.3
sin z
for z ®ð 0
z
fÅ»ðzÞð =ð
1 for z =ð 0
is analytic at z =ð 0, and find fvðÅ»ð0Þð.
9.2. Laurent series. Suppose f is analytic in the region R1 <ð z ?ð z0 <ð R2, and let C be a
| |
positively oriented simple closed curve around z0 in this region. (Note: we include the
possiblites that R1 can be 0, and R2 =ð Kð.) We shall show that for z 6ð C in this region
Kð Kð
bj
fÅ»ðzÞð =ð ajÅ»ðz ?ð z0Þðj +ð ,
>ð >ð
Å»ðz ?ð z0Þðj
j=ð0 j=ð1
where
fÅ»ðsÞð
1
aj =ð ds, for j =ð 0, 1, 2, uð

2^ði
Å»ðs ?ð z0Þðj+ð1
C
and
fÅ»ðsÞð
1
bj =ð ds, for j =ð 1, 2, uð .

2^ði
Å»ðs ?ð z0Þð?ðj+ð1
C
The sum of the limits of these two series is frequently written

fÅ»ðzÞð =ð cjÅ»ðz ?ð z0Þðj,

j=ð?ðKð
where
fÅ»ðsÞð
1
cj =ð , j =ð 0, Ä…ð1, Ä…ð2,uð .

2^ði
Å»ðs ?ð z0Þðj+ð1
C
This recipe for fÅ»ðzÞð is called a Laurent series, although it is important to keep in mind that
it is really two series.
9.4
Okay, now let s derive the above formula. First, let r1 and r2 be so that
R1 <ð r1 ²ð z ?ð z0 ²ð r2 <ð R2 and so that the point z and the curve C are included in the
| |
region r1 ²ð z ?ð z0 ²ð r2. Also, let @ð be a circle centered at z and such that @ð is included in
| |
this region.
fÅ»ðsÞð
Then is an analytic function (of s) on the region bounded by C1, C2, and @ð, where C1 is
s?ðz
the circle z =ð r1 and C2 is the circle z =ð r2. Thus,
| | | |
fÅ»ðsÞð fÅ»ðsÞð fÅ»ðsÞð
ds =ð ds +ð ds.
Xð Xð Xð
s ?ð z s ?ð z s ?ð z
C2 C1 @ð
fÅ»ðsÞð
(All three circles are positively oriented, of course.) But Xð ds =ð 2^ðifÅ»ðzÞð, and so we have
s?ðz

fÅ»ðsÞð fÅ»ðsÞð
2^ðifÅ»ðzÞð =ð ds ?ð ds.
Xð Xð
s ?ð z s ?ð z
C2 C1
Look at the first of the two integrals on the right-hand side of this equation. For sOðC2, we
have z ?ð z0 <ð s ?ð z0 , and so
| | | |
1 1

s ?ð z
Å»ðs ?ð z0Þð ?ð Å»ðz ?ð z0Þð
1 1

s ?ð z0 1 ?ð Å»ð z?ðz0 Þð
s?ðz0

z ?ð z0 j
1


s ?ð z0 s ?ð z0
j=ð0

1
=ð Å»ðz ?ð z0Þðj.

s ?ð z0
Å»ð Þðj+ð1
j=ð0
9.5
Hence,

fÅ»ðsÞð fÅ»ðsÞð
ds =ð ds Å»ðz ?ð z0Þðj
Xð >ð Xð
s ?ð z
s ?ð z0
Å»ð Þðj+ð1
j=ð0
C2 C2

fÅ»ðsÞð
=ð . ds Å»ðz ?ð z0Þðj
>ð Xð
s ?ð z0
Å»ð Þðj+ð1
j=ð0
C
For the second of these two integrals, note that for sOðC1 we have s ?ð z0 <ð z ?ð z0 , and so
| | | |
1 ?ð1 ?ð1 1
=ð =ð
s?ðz0
s ?ð z z ?ð z0 1 ?ð Å»ð z?ðz0 Þð
z ?ð z0 ?ð Å»ðs ?ð z0Þð
Å»ð Þð
Kð Kð
s ?ð z0 j
?ð1 1

>ð >ð
z ?ð z0 z ?ð z0 =ð ?ð Å»ðs ?ð z0Þðj
z ?ð z0
Å»ð Þðj+ð1
j=ð0 j=ð0
Kð Kð
1 1
=ð ?ð Å»ðs ?ð z0Þðj?ð1 1 =ð ?ð
>ð >ð
z ?ð z0 s ?ð z0 z ?ð z0
Å»ð Þðj j=ð1 Å»ð Þð?ðj+ð1 Å»ð Þðj
j=ð1
As before,

fÅ»ðsÞð fÅ»ðsÞð
1
ds =ð ?ð ds
Xð >ð Xð
s ?ð z
s ?ð z0 z ?ð z0
Å»ð Þð?ðj+ð1 Å»ð Þðj
j=ð1
C1 C2

fÅ»ðsÞð
1
=ð ?ð ds
>ð Xð
s ?ð z0 z ?ð z0
Å»ð Þð?ðj+ð1 Å»ð Þðj
j=ð1
C
Putting this altogether, we have the Laurent series:
fÅ»ðsÞð fÅ»ðsÞð
1 1
fÅ»ðzÞð =ð ds ?ð ds
Xð Xð
s ?ð z s ?ð z
2^ði 2^ði
C2 C1
Kð Kð
fÅ»ðsÞð fÅ»ðsÞð
1 1 1
=ð ds Å»ðz ?ð z0Þðj +ð ds .
>ð Xð >ð Xð
2^ði 2^ði
s ?ð z0 s ?ð z0 z ?ð z0
Å»ð Þðj+ð1 Å»ð Þð?ðj+ð1 Å»ð Þðj
j=ð0 j=ð1
C C
Example
9.6
Let f be defined by
1
fÅ»ðzÞð =ð .
zÅ»ðz ?ð 1Þð
First, observe that f is analytic in the region 0 <ð z <ð 1. Let s find the Laurent series for f
| |
valid in this region. First,
1 1 1
fÅ»ðzÞð =ð =ð ?ð +ð .
z
z ?ð 1
zÅ»ðz ?ð 1Þð
From our vast knowledge of the Geometric series, we have

1
fÅ»ðzÞð =ð ?ð ?ð zj.

z
j=ð0
Now let s find another Laurent series for f, the one valid for the region 1 <ð z <ð Kð.
| |
First,
1 1 1
=ð .
z 1
z ?ð 1
1 ?ð
z
1
Now since <ð 1, we have
| |
z
Kð Kð
1 1 1 1
=ð =ð z?ðj =ð z?ðj,
>ð >ð
z 1 z
z ?ð 1
1 ?ð
z
j=ð0 j=ð1
and so

1 1 1
fÅ»ðzÞð =ð ?ð +ð =ð ?ð +ð z?ðj

z z
z ?ð 1
j=ð1

fÅ»ðzÞð =ð z?ðj.

j=ð2
Exercises
8. Find two Laurent series in powers of z for the function f defined by
9.7
1
fÅ»ðzÞð =ð
z2Å»ð1 ?ð zÞð
and specify the regions in which the series converge to fÅ»ðzÞð.
9. Find two Laurent series in powers of z for the function f defined by
1
fÅ»ðzÞð =ð
zÅ»ð1 +ð z2Þð
and specify the regions in which the series converge to fÅ»ðzÞð.
1
10. Find the Laurent series in powers of z ?ð 1for fÅ»ðzÞð =ð in the region 1 <ð z ?ð 1 <ð Kð.
| |
z
9.8


Wyszukiwarka

Podobne podstrony:
CH9
ch9 (7)
ch9
CH9
ch9 (3)
Cisco2 ch9 Focus
ch9 (14)
ch9
DK2192 CH9
Cisco2 ch9 Vocab
ch9
Ch9 Pgs311 338
wishcraft ch9
ch9 (4)
CH9 (2) Nieznany
ch9 (9)
ch9 (13)
0472113038 ch9

więcej podobnych podstron