OXALYL CHLORIDE 1
Oxalyl Chloride sensitive to strong acids or are bases (see also Oxalyl Chloride
Dimethylformamide for a procedure conducted under neutral
conditions using silyl esters). By adjusting the molar proportions
O Cl
of oxalyl chloride to substrate, anhydrides can also be prepared
using these methods (eq 2).15 N-Carboxy-Ä…-amino acid anhy-
Cl O
drides can also be made this way.16
[79-37-8] C2Cl2O2 (MW 126.92) (COCl)2
COCl CO2 K+ 0.5 equiv (COCl)2
InChI = 1/C2Cl2O2/c3-1(5)2(4)6
benzene, reflux benzene, reflux
85% 85%
InChIKey = CTSLXHKWHWQRSH-UHFFFAOYAG N N
CO)2 O
(versatile agent for preparation of carboxylic acid chlorides;1
(2)
phosphonic acid dichlorides;2 alkyl chlorides;3 ²-chloro enones;4
N
acyl isocyanates5)
The use of nonpolar solvents such as hexane or toluene allows
ć% ć%
Physical Data: mp -12 C; bp 63 64 C/763 mmHg; for the removal of inorganic or amine salts which may otherwise
d 1.48 g cm-3; n20 1.4305. interfere with subsequent reactions.
D
Solubility: sol hexane, benzene, diethyl ether, halogenated Under the mild conditions employed (eqs 3 and 4),17 racemi-
solvents, e.g. dichloromethane and chloroform, acetonitrile. zation of stereogenic centers, skeletal rearrangement, or byprod-
Form Supplied in: colorless, fuming liquid; widely available; uct formation, seen with other reagents such as thionyl chloride/
2 M soln in dichloromethane. pyridine,18 are seldom observed.
Handling, Storage, and Precautions: liquid and solution are
toxic, corrosive, and severely irritating to the eyes, skin, and res-
(COCl)2
O OH
O Cl
(3)
piratory tract. Use in a fume hood and wear protective gloves,
CH2Cl2
O O
O O
goggles, and clothing. Bottles should be stored in a cool, dry
reflux
H
H
place and kept tightly sealed to preclude contact with moisture.
Decomposes violently with water, giving toxic fumes of CO,
(COCl)2
(4)
CO2, HCl.
Cl
pyridine
NHCOCF3
HO2C NHCOCF3 0 °C to rt
O
Conversion of ²-bromoacrylic acid to the acid chloride
Original Commentary using thionyl chloride/DMF, Phosphorus(III) Chloride, or ben-
zotrichloride/zinc chloride also resulted in bromine for chlorine
Roger Salmon
exchange. Use of oxalyl chloride with the preformed ammonium
Zeneca Agrochemicals, Bracknell, UK
salt provided a mild, general method to ²-bromoacryloyl chlo-
rides (eq 5)19 without halogen exchange or (E/Z) equilibration.
Preparation of Carboxylic Acid Chlorides (and Anhy-
²-Fluoro- and iodoacrylic acids have been cleanly converted to
drides). Oxalyl chloride has found general application for the
the acid chlorides without prior salt formation.
preparation of carboxylic acid chlorides since the reagent was in-
troduced by Adams and Ulich.1 Acid chlorides produced by this
Br Br
means have subsequently featured in the synthesis of acyl azides,6 (COCl)2
(5)
bromoalkenes,7 carboxamides,8 cinnolines,9 diazo ketones,10
hexane, reflux
O NH4+ Cl
80%
(thio)esters,11 lactones,12 ketenes for cycloaddition reactions,13 O O
intramolecular Friedel Crafts acylation reactions,14 and the
synthesis of pyridyl thioethers.11
As well as forming acid chlorides, Ä…-tertiary amino acids can
Like Thionyl Chloride, oxalyl chloride gives gaseous byprod-
react with oxalyl chloride and undergo an oxidative decarboxy-
ucts with acids and the chlorides can be readily isolated in a pure
lation to give iminium salts, or ring expansion, depending on the
form by evaporation of the solvent and any excess reagent, or used
substituents and their stereochemistry (eq 6).20
in situ for further elaboration (eq 1).
Cl
O
O Cl OH
(COCl)2
R O O
R OH
R1
N+ R1
+ + (6)
O
R1
N R2 R3 R2 N
O
Cl O O H
O
Cl
R2 R3 R3
(A) (B)
R Cl
+ CO2 + CO + HCl (1) % Yield
O
R1 R2 R3 (A) (B)
t-Bu 0 69
Me H
c-Hex 0 59
Prior formation of an amine or alkali metal salt, with or with-
H CO2Me
Me 30 0
H Me
out pyridine,1 has been used to advantage with substrates that are
Avoid Skin Contact with All Reagents
2 OXALYL CHLORIDE
Preparation of Phosphonic Acid Chlorides. Phosphonic Tertiary alcohols have been converted to tertiary chlorides in
acid dichlorides have been obtained in high yield (determined a Barton Hunsdiecker type radical process using hydroxamate
31
by P NMR) at low temperature from the corresponding acids esters (eq 12).27
using oxalyl chloride and Pyridine (eq 7).2
1. THF, py, 25 °C
O O N S
2. 78 °C, (COCl)2
O ClO Na+
(COCl)2
(7)
P OH P Cl
ROH
R 3. rt R
OH Cl
benzene, rt CCl4, reflux
RO O
R = Et, PhCH2, CF2H, arabinomethyl, phthalidyl
RCl + 2 CO2 + (12)
Similarly, monoalkyl methylphosphonochloridates (eq 8)21
N SCCl3
can be made from dialkyl esters; thionate acid chlorides could
e.g. R = Me(CH2)16CMe2
not be made by this method. Thionyl chloride and PCl5 were also
used to make this type of compound (see also Oxalyl Chloride
Dimethylformamide).
Chlorination of Alkenes. A novel stereospecific dichlorina-
tion of electron rich alkenes has been reported using a manganese
O O
1. (COCl)2, Et2O
reagent generated from Benzyltriethylammonium Chloride and
P OR P OR + RCl (8)
Me Me
oxalyl chloride (eqs 13 17).28 No oxygenation byproducts are
2. rt, 24 h
OR Cl
observed.
R = Me, Et, Pr, i-Pr, Bu
Cl
R2
Numerous other reagents such as PCl3, PCl5, POCl3, and Ph3P/
R1
PhCH2NEt3+ MnO4
R2
[Mn] (13)
R1
CCl4 are available for the preparation of acid chlorides and anhy-
+ (COCl)2 45 °C
Cl
drides but may not be as convenient as the byproducts are not so
easily removed, or the reactions require more vigorous conditions.
Cl
Ph
Direct Introduction of the Chlorocarbonyl Group (Halo-
[Mn] Cl (14)
Ph
98%
carbonylation). Alkanes or cycloalkanes react with oxalyl chlo-
ride under radical conditions; typically, mixtures are produced.22
Cl
C5H11
However, bicyclo[2.2.1]heptane undergoes regio- and stereo-
[Mn] (15)
C5H11
specific chlorocarbonylation, giving the ester on subsequent
69%
Cl
methanolysis (eq 9).23
1. (COCl)2, (PhCO2)2
Cl
PhCl, 85 °C
CO2Me
(9)
[Mn] (16)
2. MeOH
80%
Cl
H
O
Certain alkenes such as 1-methylcyclohexene and styrene react
Cl
with oxalyl chloride, under ionic conditions without added cat- O
[Mn] O Cl (17)
alyst, to give alkenoic acid chlorides in variable yields. Alkenes
96%
such as octene and stilbene did not react under these conditions.24 O
Reactions of aromatic compounds with oxalyl chloride/Lewis
acid catalysts have been reviewed.25 Anthracene is unusual as it
Reactions with Carbonyl Groups. Unsaturated 3-keto
undergoes substitution without added catalyst (eq 10).26
steroids give the corresponding 3-chloro derivatives with oxalyl
chloride (eq 18).4 Prolonged heating can give rise to aromati-
COCl
zation.4 Tropone gives the chlorotropylium chloride in high
(COCl)2, PhNO2
yield.4 In a related reaction, 1,2-dithiol-3-ones and -3-thiones give
(10)
120 240 °C
dithiolium salts when heated in toluene or chloroform with the
reagent.4 A range of ²-chloro enones has been prepared from dike-
tones. Dimedone gives the ²-chloro enone in high yield (eq 19).29
Keto esters did not react to give ²-chloro esters.
Preparation of Chloroalkanes. Alcohols react with oxalyl
chloride to give oxalyl monoalkyl esters, which if heated in the
O
O
presence of pyridine give the alkyl chloride (eq 11).3
(COCl)2
(18)
O Cl
(COCl)2 pyridine
rt, benzene
ROH RCl + CO + CO2 (11)
benzene, rt 120 125 °C
O
Cl
RO O
A list of General Abbreviations appears on the front Endpapers
OXALYL CHLORIDE 3
O O
example (see also Oxalyl Bromide and Diethyl Oxalate). Re-
(COCl)2, CHCl3
cently, the preparation of new reagents starting from oxalyl chlo-
(19)
rt, reflux ride has been reported. Thus, reaction of 1H-benzotriazole with
O 92% Cl
oxalyl chloride led to formation of the corresponding dibenzotri-
azole derivative which, in turn, was shown to be an excellent tool
²-Keto aldehydes give a single regio- and stereospecific isomer,
for the preparation of unsymmetrical tetrasubstituted oxamides.42
the chlorine being cis to the carbonyl group (eq 20).
Drawing upon the utility of Weinreb amides, N, N -dimethoxy-N,
N -dimethylethanediamide was prepared from oxalyl chloride and
O O Cl
demonstrated to have utility for the synthesis of Ä…-keto amides and
(COCl)2
CHO (20)
1,2-diketones.43
H
CHCl3
83%
Formation of Chloroiminium Salts. Oxalyl chloride reacts
readily with amides or lactams to afford chloroiminium salts
Certain triketones give 3-chlorides with excess oxalyl chloride,
that have many synthetic applications (eq 23) (see also Oxalyl
in good yield (eq 21).30
Chloride-Dimethylformamide).
MeO O Cl
O OH Cl
O
(COCl)2 Cl
(21)
+
R2 (COCl)2 R2 (23)
MeO
R1 N N
R1
O
O
R3 R3
For example, efficient syntheses of thioamides and thio-
Preparation of Acyl Isocyanates and Aryl Isocyanates. Cer-
lactams are based on this methodology.44,45 Certain types of
tain primary carboxamides can be converted to acyl isocyanates
chloroiminium salts can serve as precursors for high-energy syn-
in yields from 36 97% with the reagent (eq 22);5 Phosgene
thetic intermediates. Thus, azomethine ylides were obtained by
gives nitriles under similar conditions. Oxalyl chloride has found
treatment of ²-acylamino carboxylic esters with oxalyl chloride
limited application for the preparation of triazine and quinone
(eq 24).46
isocyanates.5
Cl
R NH2 (COCl)2, reflux R NCO O
(22)
(COCl)2
ClCH2CH2Cl
O O R1 N COOR2
R1 N COOR2
Me
R = ClCH2, CCl3, PhCH2, 3,4-Cl2C6H3, Ph2CH Me
Cl
(24)
Miscellaneous Applications. Oxalyl chloride has been used
R1 N COOR2
in the preparation of 2,3-furandiones from alkenyloxysilanes,31
Me
o-aminophenols from N-aryl nitrones,32 dihydroquinolines
via a modified Bischler Napieralski ring closure,33 2,3-²-
Chloroiminium salts prepared from formaldehyde led to amino-
furoquinoxalines from quinoxazolones,34 sterically hindered
chlorocarbenes when treated with base (eq 25).47,48
salicylaldehydes from phenoxyoxalyl chlorides,35 and in mild
cleavage of 7-carboxamido groups in cephalosporin natural prod-
O
1. (COCl)2
ucts, without cleavage of the lactam ring or disruption of optical
R1
2. base
R1
centers.36
N H (25)
N Cl
Me
Me
First Update
Oxalyl Chloride as a C2 Synthon. Oxalyl chloride has found
Ivan V. Efremov widespread use as a C2 building block in organic synthesis. Ap-
Pfizer Inc., Groton, CT, USA plications of this reagent in such a fashion for the synthesis of
heterocycles have been reviewed.49 A particular area of interest
Preparation of Carboxylic Acid Chlorides. As described in involves the synthesis and utility of oxazolidine-4,5-diones.50
the original article, oxalyl chloride is widely need for the synthesis A general synthesis of butenolides taking advantage of one-pot
of carboxylic acid chlorides. This general approach has found use cyclization of silyl enol ethers with oxalyl chloride was developed
in new chemistry fields such as combinatorial chemistry37 and by Langer and applied to a number of synthetic problems. This
dendrimer synthesis.38 40 An interesting downstream application useful methodology has recently been reviewed.51
was formation of macrocyclic diamides without resorting to high Additional examples of the utilization of oxalyl chloride as a
dilution.41 C2 synthon include preparation of maleic anhydrides,52,53 1,4-
dioxane-2,3-diones54,55 and 1,2-diketones.56 58 A useful in situ
Source of Other Oxalyl Derivatives. A variety of other oxa- reduction of the latter was developed to allow for a streamlined
lyl derivatives is known oxalyl diimidazole can serve as an synthesis of vicinal diamines (eq 26).59
Avoid Skin Contact with All Reagents
4 OXALYL CHLORIDE
(COCl)2
occurs through initial formation of formyl chloride.65 Symmet-
NaBH4
rical tetrasubstituted oxamides could be prepared from N-alkyl
TFA
N
(26)
N
cyclic amines. The postulated first step is the formation of an N-
62%
N
acyltrialkylammonium salt followed by selective loss of the alkyl
H
substituent most capable of forming a stable carbocation. The
observed substituent effects were consistent with the proposed
Oxalyl Chloride as a C1 Synthon. Although oxalyl chlo- mechanism.66 Aryl isocyanates could be obtained directly from
aniline hydrochlorides by treatment with oxalyl chloride. The
ride is mainly employed as a C2 equivalent in organic synthesis,
there are successful examples of using this reagent for the intro- final products result from thermal decomposition of initially
formed oxamic chlorides.67
duction of a single carbon functionality. Thus, in addition to the
expected formation of 1,4-dioxane-2,3-diones when reacted with
1,2-diols, the reaction can also lead to the preparation of cyclic Related Reagents. Dimethyl Sulfoxide Oxalyl Chloride;
carbonates.55,60 Also, oxalyl chloride can react with ambident Oxalyl Chloride Aluminum Chloride.
dianions as a C1 synthon (eq 27).61
N
Ph2CO
N
(COCl)2
CH2 (27)
Ph 1. Adams, R.; Ulich, L. H., J. Am. Chem. Soc. 1920, 42, 599.
N
46%
N
2. Stowell, M. H. B.; Ueland, J. M.; McClard, R. W., Tetrahedron Lett.
Ph
O
2 Li
1990, 31, 3261.
O
3. Rhoads, S. J.; Michel, R. E., J. Am. Chem. Soc. 1963, 85, 585.
4. (a) Moersch, G. W.; Neuklis, W. A.; Culbertson, T. P.; Morrow, D. F.;
Miscellaneous Applications. Oxalyl chloride has been used Butler, M. E., J. Org. Chem. 1964, 29, 2495. (b) Haug, E.; Fohlisch, B.,
Z. Naturforsch., Tell B 1969, 24, 1353 (Chem. Abstr. 1970, 72, 43 079m).
as a reagent for stereospecific synthesis of 2-azetidinones from
(c) Bader, J., Helv. Chim. Acta 1968, 51, 1409. (d) Faust, J.; Mayer, R.,
aziridine-2-carboxylates (eq 28).62
Justus Liebigs Ann. Chem. 1965, 688, 150.
Cl R1
(COCl)2, NEt3
R1 COONa 5. (a) Speziale, A. J.; Smith, L. R., J. Org. Chem. 1962, 27, 3742. (b) von
25 °C
Gizycki, U., Angew. Chem., Int. Ed. Engl. 1971, 10, 403.
(28)
N
N
6. (a) van Reijendam, J. W.; Baardman, F., Synthesis 1973, 413.
O R2
R2
(b) Lemmens, J. M.; Blommerde, W. W. J. M.; Thijs, L.; Zwanenburg,
B., J. Org. Chem. 1984, 49, 2231.
7. Paquette, L. A.; Dahnke, K.; Doyon, J.; He, W.; Wyant, K.; Friendrich,
Another interesting stereospecific transformation is the con-
D., J. Org. Chem. 1991, 56, 6199.
version of enantiomerically pure Ä…-Li alkyl sulfoxides to vicinal
8. Keller-Schierlein, W.; Muller, A.; Hagmann, L.; Schneider, U.; Zähner,
chloroamines (eq 29).63 The nonoxidative chloro-Pummerer re-
H., Helv. Chim. Acta 1985, 68, 559.
arrangement was proposed as the mechanism. The final products
9. Hutchings, M. G.; Devonald, D. P., Tetrahedron Lett. 1989, 30,
can be converted to the corresponding aziridines by treatment with
3715.
sodium borohydride followed by sodium hydride.
10. (a) Wilds, A. L.; Shunk, C. H., J. Am. Chem. Soc. 1948, 70, 2427.
(b) Hudlicky, T; Kutchan, T., Tetrahedron Lett. 1980, 21, 691. (c)
Ar
Duddeck, H.; Ferguson, G.; Kaitner, B.; Kennedy, M., J. Chem. Soc.,
NHCOOR5
(COCl)2
O S COOR5 Perkin Trans. 1 1990, 1055.
symm-collidine N
S
R4
Ar R2 R4 (29) 11. (a) Szmuszkovicz, J., J. Org. Chem. 1964, 29, 843. (b) Hatanaka, M.;
R3 Yamamoto, Y.; Nitta, H.; Ishimaru, T., Tetrahedron Lett. 1981, 22, 3883.
R1 R3
R1 R2
(c) Cochrane, E. J.; Lazer, S. W.; Pinhey, J. T.; Whitby, J. D., Tetrahedron
Cl
Lett. 1989, 30, 7111.
12. Bacardit, R.; Cervelló, J.; de March, P.; Marquet, J.; Moreno-Mańas, M.;
Treatment of serine-containing peptides with oxalyl chloride
Roca, J. L., J. Heterocycl. Chem. 1989, 26, 1205.
resulted in mild dehydration to afford the corresponding Ä…-Ala
13. (a) Brady, W. T.; Giang, Y. F., J. Org. Chem. 1985, 50, 5177. (b) Snider,
derivatives (eq 30).64
B. B.; Allentoff, A. J., J. Org. Chem. 1991, 56, 321.
14. (a) Burke, S. D.; Murtiashaw, C. W.; Dike, M. S.; Smith-Strickland, S.
(COCl)2
OH
M.; Saunders, J. O., J. Org. Chem. 1981, 46, 2400. (b) Satake, K.; Imai,
NEt3
H O
T.; Kimura, M.; Morosawa, S., Heterocycles 1981, 16, 1271.
H
CH2Cl2
N
15. (a) Wingfield, H. N.; Harlan, W. R.; Hanmer, H. R., J. Am. Chem. Soc.
Z N COOMe 0 °C
1953, 75, 4364. (b) Schrecker, A. W.; Maury, P. B., J. Am. Chem. Soc.
R H
1954, 76, 5803.
H O
16. Konopinska, D.; Siemion, I. Z., Angew. Chem., Int. Ed. Engl. 1967, 6,
N 248.
(30)
Z N COOMe
17. (a) Ihara, M.; Yasui, K.; Takahashi, M.; Taniguchi, N.; Fukumoto, K., J.
R H
Chem. Soc., Perkin Trans. 1 1990, 1469. (b) Nordlander, J. E.; Njoroge,
F. G.; Payne, M. J.; Warman, D., J. Org. Chem. 1985, 50, 3481.
N-Formylimidazole was shown to be a convenient formylat-
18. (a) Simon, M. S.; Rogers, J. B.; Saenger, W.; Gououtas, J. Z., J. Am.
ing agent for a variety of amines and could be prepared in situ
Chem. Soc. 1967, 89, 5838. (b) Krubsack, A. J.; Higa, T., Tetrahedron
from oxalyl chloride, formic acid, and imidazole. The reaction Lett. 1968, 5149.
A list of General Abbreviations appears on the front Endpapers
OXALYL CHLORIDE 5
19. (a) Stack, D. P.; Coates, R. M., Synthesis 1984, 434. (b) Gillet, J. P.; 41. Sharghi, H.; Niknam, K.; Massah, A. R., J. Heterocycl. Chem. 1999, 36,
Sauvętre, R.; Normant, J. F., Synthesis 1982, 297. (c) Wilson, R. M.; 601.
Commons, T. J., J. Org. Chem. 1975, 40, 2891.
42. Katritzki, A. R.; Levell, J. R.; Pleynet, D. P. M., Synthesis 1998,
20. (a) Wasserman, H. H.; Han, W. T.; Schaus, J. M.; Faller, J. W., 153.
Tetrahedron Lett. 1984, 25, 3111. (b) Clough, S. C.; Deyrup, J. A., J.
43. Sibi, M. P.; Marvin, M.; Sharma, R., J. Org. Chem. 1995; 60, 5016.
Org. Chem. 1974, 39, 902. (c) Sardina, F. J.; Howard, M. H.; Koskinen,
44. Ilankumaran, P.; Ramesha, A. R.; Chandrasekaran, S., Tetrahedron Lett.
A. M. P.; Rapoport, H. J., J. Org. Chem. 1989, 54, 4654.
1995, 36, 8311.
21. Pelchowicz, Z., J. Chem. Soc. 1961, 238.
45. Smith, D. C.; Lee, S. W.; Fuchs, P. L., J. Org. Chem. 1994, 59, 348.
22. (a) Kharasch, M. S.; Brown, H. C., J. Am. Chem. Soc. 1942, 64, 329.
46. Anderson, R. J.; Batsanov, A. S.; Belskaia, N.; Groundwater, P. W.;
(b) Tabushi, I.; Hamuro, J.; Oda, R., J. Org. Chem. 1968, 33, 2108.
Meth-Cohn, O.; Zaytsev, A., Tetrahedron Lett. 2004, 45, 943.
23. Tabushi, I.; Okada, T.; Oda, R., Tetrahedron Lett. 1969, 1605.
47. Cheng, Y.; Yang, H.; Meth-Cohn, O., Org. Biomol. Chem. 2003, 1, 3605.
24. (a) Kharasch, M. S.; Kane, S. S.; Brown, H. C., J. Am. Chem. Soc.
48. Cheng, Y.; Yang, H.; Meth-Cohn, O., Chemical Commun. 2003,
1942, 64, 333. (b) Bergmann, F.; Weizmann, M.; Dimant, E.; Patai, J;
90.
Szmuskowicz, J., J. Am. Chem. Soc. 1948, 70, 1612.
49. Beckert, R.; Mayer, R., Wissenschaftliche Zeitschrift der Technischen
25. Olah, G. A.; Olah, J. A. In The Friedel Crafts Reaction; Olah, G. A.,
Universitaet Dresden 1987, 36, 87 (CAN 108:167337).
Ed.; Interscience: New York, 1964; Vol. 3, p. 1257.
50. Nekrasov, D. D., Izbrannye Metody Sinteza i Modifikatsii Geterotsiklov
26. Latham, H. G.; May, E. L.; Mosettig, E., J. Am. Chem. Soc. 1948, 70,
2003, 2, 396 (CAN 141:295900).
1079.
51. Langer, P., Synlett 2006, 3369.
27. (a) Barton, D. H. R.; Crich, D., J. Chem. Soc., Chem. Commun. 1984,
52. Roy, S.; Eastman, A.; Gribble, G. W., Tetrahedron 2006, 62, 7838.
774. (b) Crich, D.; Forth, S. M., Synthesis 1987, 35.
53. Davis, P. D.; Bit, R. A.; Hurst, S. A., Tetrahedron Lett. 1990, 31, 2353.
28. Markó, I. E.; Richardson, P. F., Tetrahedron Lett. 1991, 32, 1831.
54. Itaya, T.; Iida, T., J. Chem. Soc., Perkin Trans. 1 1994, 1671.
29. (a) Clark, R. D.; Heathcock, C. H., J. Org. Chem. 1976, 41, 636.
55. Iida, T.; Itaya, T., Tetrahedron 1993, 49, 10511.
(b) Pellicciari, R; Fringuelli, F; Sisani, E.; Curini, M., J. Chem. Soc.,
Perkin Trans. 1 1981, 2566. (c) Büchi, G.; Carlson, J. A., J. Am. Chem. 56. Faust, R.; Weber, C.; Fiandanese, V.; Marchese, G.; Punzi, A.,
Soc. 1969, 91, 6470. Tetrahedron 1997, 53, 14655.
30. Lakhvich, F. A.; Khlebnicova, T. S.; Ahren, A. A., Synthesis 1985, 784. 57. Malanga, C.; Aronica, L. A.; Lardicci, L., Tetrahedron Lett. 1995, 36,
9185.
31. Murai, S.; Hasegawa, K.; Sonoda, N., Angew. Chem., Int. Ed. Engl. 1975,
14, 636. 58. Babudri, F.; Fiandanese, V.; Marchese, G.; Punzi, A., Tetrahedron Lett.
1995, 36, 7305.
32. Liotta, D.; Baker, A. D.; Goldman, N. L.; Engel, R., J. Org. Chem. 1974,
39, 1975. 59. Nutaitis, C. F., Synth. Commun. 1992, 22, 1081.
33. Larsen, R. D.; Reamer, R. A.; Corley, E. G.; Davis, P.; Grabowski, E. J. 60. Itaya, T.; Iida, T.; Eguchi, H., Chem. Pharm. Bull. 1993, 41, 408.
J.; Reider, P. J.; Shinkai, I., J. Org. Chem. 1991, 56, 6034.
61. Langer, P.; Doering, M.; Seyferth, D., Synlett 1999, 135.
34. Kollenz, G., Justus Liebigs Ann. Chem. 1972, 762, 13.
62. Sharma, S. D.; Kanwar, S.; Rajpoot, S., J. Heterocycl. Chem. 2006, 43,
35. Zwanenburg, D. J.; Reynen, W. A. P., Synthesis 1976, 624. 11.
36. Shiozaki, M.; Ishida, N.; Iino, K.; Hiraoka, T., Tetrahedron Lett. 1977, 63. Volonterio, A.; Bravo, P.; Panzeri, W.; Pesenti, C.; Zanda, M., Eur. J.
4059. Org. Chem. 2002, 3336.
37. Georgiadis, T. M.; Baindur, N.; Player, M. R., J. Comb. Chem. 2004, 6, 64. Ranganathan, D.; Shah, K.; Vaish, N., J. Chem. Soc., Chem. Commun.
224. 1992, 1145.
38. Zimmerman, S. C.; Zharov, I.; Wendland, M. S.; Rakow, N. A.; Suslick, 65. Kitagawa, T.; Ito, J.; Tsutsui, C., Chem. Pharm. Bull. 1994, 42, 1931.
K. S., J. Am. Chem. Soc. 2003, 125, 13504.
66. Paritosh, R. D.; Kumar, K. A.; Duddu, R.; Axenrod, T.; Dai, R.; Das,
39. Yamaguchi, N.; Wang, J.-S.; Hewitt, J. M.; Lenhart, W. C.; Mourey, K. K.; Guan, X.-P.; Sun, J.; Trivedi, N. J., J. Org. Chem. 2000, 65,
T. H., J. Polym. Sci., Part A 2002, 40, 2855. 1207.
40. Chaumette, J.-L.; Laufersweiler, M. J.; Parquette, J. R., J. Org. Chem. 67. Oh, L. M.; Spoors, P. G.; Goodman, R. M., Tetrahedron Lett. 2004, 45,
1998, 63, 9399. 4769.
Avoid Skin Contact with All Reagents
Wyszukiwarka
Podobne podstrony:
tin IV chloride zinc chloride eros eros rt115lithium chloride eros rl076iron II chloride eros ri055rhodium III chloride eros rr004aluminum chloride eros ra079tin II chloride eros rt112pyridinium chloride eros rp287mmercury II chloride eros rm031thionyl chloride eros rt099vanadium II chloride eros rv002allyl chloride eros ra046palladium II chloride eros rp007tin IV chloride eros rt113benzyl chloride eros rb050hydrogen chloride eros rh035phenylzinc chloride eros rp148iron III chloride eros ri054oxalyl bromide eros ro014copper II chloride eros rc214więcej podobnych podstron