allyl chloride eros ra046


ALLYL CHLORIDE 1
The reductive allylation process (eq 2) occurs with aldehydes
Allyl Chloride1
in the presence of Bi,10a,10b Al/BiCl3,10b,10c Al/PbBr2,11 Zn,12
and Fe/BiCl3.10b Acid chlorides in the presence of Cp2Sm af-
Cl
ford allyl ketones.13 Dry stirring Magnesium turnings in an inert
atmosphere greatly promotes the formation of allylmagnesium
chloride without the formation of biallyl and similar products.14
[107-05-1] C3H5Cl (MW 76.53)
In addition to the expected range of Grignard reactions based upon
InChI = 1/C3H5Cl/c1-2-3-4/h2H,1,3H2
allylmagnesium chloride, allyl chloride reacts with Lithium Di-
InChIKey = OSDWBNJEKMUWAV-UHFFFAOYAQ
isopropylamide to form Ä…-chloroallyllithium, which undergoes
the expected reactions with RCl, RCHO, R3SiCl, and R3SnCl
(allylating agent which attacks C, O, N, S, Se, Te nucleophiles;
(eq 3).15
organometallic derivatives provide homoallyl alcohols; expected
electrophilic addition reactions)
ć% ć% R2
M
Physical Data: mp -136.4 C; bp 44.6 C; d 0.938 g mL-1.
Cl
OH
+ RCOR2 (2)
Solubility: miscible with organic liquids.
R
Form Supplied in: colorless liquid, discoloring on standing and
R = H, alkyl
exposure to air. M = Zn, Fe, Al, etc.
Purification: wash with concd HCl, then with aq Na2CO3 and
dry (CaCl2). Impurities include isomers and chloropropanes;
efficient fractional distillation is essential.2a
H H H
LDA
Handling, Storage, and Precautions: volatile, flammable, toxic,
(3)
irritant, alkylating agent. H Cl H Cl H Cl
R
R = alkyl, R3Si, R3Sn
Usually manufactured by high temperature chlorination of
propene;2b hence the incidence of isomeric and polychlorinated
Allyllithium (RLi) itself is made by cleavage of RSnPh3
impurities. Allyl chloride allylates ethyl acetoacetate derivatives
(from RBr, Mg, and Ph3SnCl)16a,16b or of allyl aryl ethers
ć%
(40% aq KOH, Bu4NBr, rt, 3 h) to give 2,2-diallyl analogs (92%
(Li, THF, -15 C) (eq 4).16c
yield, 97% pure).3 Malonic esters are similarly alkylated under
dehydrating conditions (RCl, Bu4NBr, NaOH in PhMe).4 Alkyl
H H
Li
carboxylic acids may be allylated at the Ä…-position when the Na
(4)
ć%
salt (NaH xylene, 135 C, 2 h) is treated with Lithium Diethyl-
H SnR3 H Li
ć%
amide at 125 135 C until loss of Et2NH is complete, followed
ć%
by treatment with RCl at <"85 C over some hours.5 Ruthenium
or osmium Ã-acetylide complexes (e.g. 1)6 undergo allylation (at
The protected glycine ester derivative (3a) affords a reagent
the alkyne system). Some such substitutions (e.g. methanolysis)
with 2LiCl·CuCN which allylates with allyl chloride to give the
are apparently Cu catalyzed;7,8 an example is the formation of
product (3b) without loss of the stereochemical identity at the car-
3-allylpentane-2,4-dione (72%), when Cu + Cu(ClO4)2 is added
bon atom Ä… to the protected amino group (eq 5).17 Allyl chloride
to the reagents in Et2O (eq 1).8
also alkylates glycine chiral ester Schiff bases in the presence of
chiral Pd complexes.18 The allylation of the monomenthyl ester
O O
of cyclopentane-1,2-dicarboxylic acid by RCl (R = allyl) gives
O O
the compound (4) in which the allyl halide has approached from
Cl
+ (1)
the more hindered side of the molecule. Allyl tosylate gives the
sterically preferred orientation; the differences in behavior are ra-
tionalized in terms of interaction between the Li of the enolate
reagent and the Cl of RCl.19
O
O 2LiCl·CuCN
NHBoc NHBoc
(5)
IZn
Cl
O
CO2Bn CO2Bn
Ru(Ca"CR)(PPh3)2(·-C5H5)
R O
(3a)(3b)
(1) (2)
In the presence of peroxides (e.g. 1,1-Di-tert-butyl Peroxide)
crown ethers add to allyl chloride via the Ä…-hydrogen abstracted
R
radical to form, for example, 2-(3 -chloropropyl)-1,4,7,10-
O
tetraoxacyclododecane (2; R = Cl(CH2)3). While the yields are
HO2C O
i-Pr
poor (8 10%) the product is apparently isolable,9 and affords a
(4)
route to functionalized crown ethers.
Avoid Skin Contact with All Reagents
2 ALLYL CHLORIDE
Traditional nucleophilic attack is represented by reaction with 8. Baruah, J. B.; Samuelson, A. G., J. Organomet. Chem. 1989, 361, C57.
ArO- in the synthesis of allyl aryl ethers in a study of the Claisen 9. Zelechonok, Yu. B.; Orlovskii, V. V.; Zelechonok, S. F.; Zlotskii, S. S.;
Rakhmankulov, D. L., Khim. Geterotsikl. Soedin. 1990, 137 (Chem.
reaction,20 and with Sodium Sulfide to give R2S,21 and in the
Abstr. 1990, 113, 78).
analogous preparation of R2Te.22 Friedel Crafts allylation of ben-
10. (a) Wada, M.; Ohki, H.; Akiba, K., Tetrahedron Lett. 1986, 27, 4771.
zene represents an alternative route to the synthesis of propyl-
(b) Fukase, K.; Oda, Y.; Kubo, A.; Wakamiya, T.; Shiba, T., Bull. Chem.
benzene after hydrogenation, since rearrangement occurs when
Soc. Jpn. 1990, 63, 1758. (c) Wada, M.; Ohki, H.; Akiba, K., J. Chem.
propyl halides are subject to this reaction; hydrated Iron(III)
Soc., Chem. Commun. 1987, 708.
Chloride proved to be a gentle, if inefficient, catalyst for such
11. (a) Tanaka, H.; Yamashita, S.; Hamatani, T.; Ikemoto, Y.; Torii, S., Synth.
allylations.23 The use of Ru or Rh chlorides on polyethylenimine
Commun. 1987, 17, 789. (b) Torii, S.; Tanaka, H.; Yamashita, S. Jpn.
to promote the addition of CXCl3 to unsaturated systems such
Patent 63 222 123, 1988 (Chem. Abstr. 1989, 111, 56).
as allyl chloride (eq 6) extends the older application of Lewis
12. Tashiro, K.; Tanaka, K. Jpn. Patent 63 33 344, 1988 (Chem. Abstr. 1989,
acids such as Aluminum Chloride.24 The addition of Diborane to
110, 23).
allyl chloride provides (Å‚-chloropropyl)boranes which then
13. Collin, J.; Bied, C.; Kagan, H. B., Tetrahedron Lett. 1991, 32, 629.
provide cyclopropane;25a with Sodium Amide, allyl chloride gives
14. (a) Baker, K. V.; Brown, J. M.; Hughes, N.; Skarnulis, A. J.; Sexton,
cyclopropene (low yield).25b
A., J. Org. Chem. 1991, 56, 698. (b) Oppolzer, W.; Schneider, P.,
Tetrahedron Lett. 1984, 25, 3305. (c) Benkeser, R. A., Synthesis 1971,
347.
Cl
15. Julia, M.; Verpeaux, J.-N.; Zahneisen, T., Synlett 1990, 769.
Cl
CXCl3 + (6)
XCl2C Cl
16. (a) Seyferth, D.; Weiner, M. A., Org. Synth., Coll. Vol. 1973, 5, 452. (b)
Seyferth, D.; Weiner, M. A., J. Org. Chem. 1959, 24, 1395. (c) Eisch, J.
J.; Jacobs, A. M., J. Org. Chem. 1963, 28, 2145.
17. Dunn, M. J.; Jackson, R. F. W., J. Chem. Soc., Chem. Commun. 1992,
Related Reagents. Allyl Bromide; Allyl Iodide.
319.
18. Genet, J. P.; Kopola, N.; Juge, S.; Ruiz- Montas, J.; Antunes, O. A. C.;
Tanier, S., Tetrahedron Lett. 1990, 31, 3133.
19. Kigoshi, H.; Imamura, Y.; Yoshikawa, K.; Niwa, H.; Yamada, K.,
1. (a) Kneupper, C.; Saathoff, L. In Kirk-Othmer Encycl. Chem. Technol.;
Tetrahedron Lett. 1991, 32, 4541.
Wiley: New York, 1993; Vol. 6, p 59. (b) Anon, Dangerous Prop. Ind.
20. Hayashi, T.; Okada, Y.; Inaba, T., J. Chem. Res. (S) 1991, 172.
Mater. Rep. 1988, 8, 20(Chem. Abstr. 1988, 108, 191).
21. Kolta, R.; Mihalszky, K.; Cseko, I.; Leiki, G.; Szalay, P.; Fazekas,
2. (a) Oae, S.; Van der Werf, C. A., J. Am. Chem. Soc. 1953, 75, 2724. (b)
D. Hung. Patent 39 423, 1986 (Chem. Abstr. 1987, 107, 58).
Spadlo, M.; Stajszczyk, M.; Wasilewski, J.; Pokorska, Z.; Madej, W.,
22. Kirss, R. U.; Brown, D. W.; Higa, K. T.; Gedridge, R. W., Jr.,
Chem. Tech. (Leipzig) 1988, 40, 109 (Chem. Abstr. 1988, 108, 206). (c)
Organometallics 1991, 10, 3589.
Spadlo, M.; Stajszczyk, M.; Pokorska, Z.; Wasilewski, J.; Szendzielorz,
J.; Madej, W.; Lewandowski, G.; Lauer, A.; Wilusz, T.; Wojcik, E. Pol. 23. Gevorkyan, A. A.; Arakelyan, A. S.; Dzhaninyan, A. A.; Panosyan,
Patent 136 334, 1987 (Chem. Abstr. 1991, 114, 26). G. A., Arm. Khim. Zh. 1988, 41, 215 (Chem. Abstr. 1989, 110,
23).
3. Yamamoto, T.; Yamashita, A.; Numoto, N. Ger. Patent 3636818, 1987
(Chem. Abstr. 1987, 107, 58). 24. Kobrakov, K. I.; Popandopulo, N. G.; Perchenko, V. N.; Abubakirov,
R. Sh.; Shvekhgeimer, G. A., Neftekhimiya 1991, 31, 66 (Chem. Abstr.
4. (a) Yamamoto, T. Jpn. Patent 62 175 438, 1987 (Chem. Abstr. 1988, 108,
1991, 115, 28).
94). (b) Wu, G.; Huang, X., Youji Huaxue 1991, 11, 431 (Chem. Abstr.
1991, 115, 207). 25. (a) Hawthorne, M. F., J. Am. Chem. Soc. 1960, 82, 1886. (b) Closs,
G. L.; Krantz, K. D., J. Org. Chem. 1966, 31, 638.
5. Bouisset, M.; Bousquet, A.; Heymes, A. Fr. Patent 2 599 737, 1987
(Chem. Abstr. 1988, 109, 92).
6. Bruce, M. I.; Humphrey, M. G., Aust. J. Chem. 1989, 42, 1067. Roger Bolton
University of Surrey, Guildford, UK
7. (a) Kurtz, P., Justus Liebigs Ann. Chem. 1962, 658, 6. (b) Baruah, J. B.;
Samuelson, A. G., J. Chem. Soc., Chem. Commun. 1987, 36.
A list of General Abbreviations appears on the front Endpapers


Wyszukiwarka

Podobne podstrony:
tin IV chloride zinc chloride eros eros rt115
lithium chloride eros rl076
iron II chloride eros ri055
rhodium III chloride eros rr004
aluminum chloride eros ra079
tin II chloride eros rt112
pyridinium chloride eros rp287m
mercury II chloride eros rm031
thionyl chloride eros rt099
vanadium II chloride eros rv002
oxalyl chloride eros ro015
palladium II chloride eros rp007
tin IV chloride eros rt113
benzyl chloride eros rb050
hydrogen chloride eros rh035
phenylzinc chloride eros rp148
iron III chloride eros ri054
copper II chloride eros rc214
allyl bromide eros ra045

więcej podobnych podstron