a01 wektory (01 10) FPGUDPOYZRMTN37B6A4SRUUUN6526GLDSMAILPQ


WEKTORY
Wektorami nazywamy wielko ci, które charakteryzuj si
warto ci liczbow , kierunkiem i zwrotem, a ponadto mo na je
sk ada (dodawa ) zgodnie z regu równoleg oboku.
Przyk ad wielko ci maj cej warto liczbow , kierunek i zwrot, a nie
b d cej wektorem
Oznaczenia wektorów:
Liczbowa warto wektora = modu lub d ugo
Oznaczenia modu u:
Wektory kolinearne - wektory, których kierunki s do siebie
równoleg e (niezale nie od zwrotu)
Wektory komplanarne - wektory le ce w równoleg ych
p aszczyznach
W ektory 1
Dodawanie (sk adanie) i odejmowanie wektorów
a) suma - metoda równoleg oboku lub metoda wieloboku
Na ogó :
b) ró nica - ró nic wektorów i jest taki wektor , który
dodany do wektora daje wektor
Na ogó :
Mno enie wektora przez skalar: ,
kierunki wektorów i s zgodne
zwrot: zgodny ze zwrotem gdy
przeciwny zwrotowi gdy
W ektory 2
Wersor ka dy wektor mo na przedstawi w postaci
- wektor jednostkowy, wersor wektora
Wersor jest wielko ci bezwymiarow :
Rzut wektora na o
Rzut wektora na o mo e by dodatni, ujemny lub równy zeru
Wyra enie wektora przez jego rzuty na osie uk adu wspó rz dnych
Wektor mo na przedstawi w postaci liniowej kombinacji wersorów
i :
lub ogólnie:
- sk adowe wektora
W ektory 3
Wektor po o enia
W ektory 4
ILOCZYN SKALARNY WEKTORÓW
je li , to
Iloczyn skalarny jest:
przemienny:
rozdzielny wzgl dem dodawania:
Iloczyn skalarny wersorów osi kartezja skiego uk adu odniesienia
, - symbol Kroneckera,
Zale no iloczynu skalarnego od sk adowych
Kombinacja typu nie zale y od wyboru osi, jest
niezmiennikiem (inwariantem)
Ponadto mo na pokaza , e
W ektory 5
ILOCZYN WEKTOROWY WEKTORÓW
Iloczynem wektorowym wektorów jest wektor dany wzorem
wersor normalny do p aszczyzny, w której le wektory
i tworz cy z tymi wektorami uk ad prawoskr tny
Dwa sposoby zapisu iloczynu wektorowego
Wyra enie jest liczbowo równe polu powierzchni
równoleg oboku rozpi tego na wektorach
Wektory typu nazywane s pseudowektorami. Przej cie od
prawoskr tnego uk adu wspó rz dnych do lewoskr tnego uk adu
wspó rz dnych powoduje zmian zwrotu pseudowektorów na przciwne,
natomiast nie zmienia zwrotów wektorów w cis ym sensie.
Iloczyn wektorowy nie jest przemienny
Iloczyn wektorowy jest rozdzielny wzgl dem dodawania
W ektory 6
Iloczyny wektorowe wersorów osi uk adu wspó rz dnych
Zapis iloczynu wektorowego w postaci wyznacznika
Iloczyn mieszany (skalarno-wektorowy) wektorów
Wyra enie jest równe liczbowo obj to ci równoleg o cianu
rozpi tego na wektorach
Zachodzi wi c
W ektory 7
Podwójny iloczyn wektorowy
Wektor jest prostopad y do iloczynu , a wi c jest liniow
kombinacj wektorów
Mo na pokaza , e
Pochodna wektora
Rozwa my wektor
- sta e w czasie wersory osi uk adu wspó rz dnych
- znane funkcje czasu
Analizuj c granic odpowiedniego ilorazu ró nicowego otrzymujemy
W fizyce cz sto stosuje si kropk nad liter symbolizuj c wielko dla
oznaczenia pochodnej tej wielko ci po czasie
Mo na wi c zapisa
Dla wektora po o enia poruszaj cego si punktu materialnego
W ektory 8
Ró niczka funkcji wektorowej
W szczególno ci
Przyrost funkcji wektorowej w ci gu ma ego, ale sko czonego odst pu
czsu
Pochodne i ró niczki iloczynów funkcji wektorowych
a) iloczyn funkcji skalarnej i funkcji wektorowej
b) iloczyn dwóch funkcji wektorowych
W ektory 9
Pochodna wersora
- pr dko k towa obracania si wektora
Wektor le y w p aszczy nie, w której w danej chwili obraca si
wektor i zwrócony jest w t sam stron , w któr zachodzi obrót.
W ektory 10


Wyszukiwarka

Podobne podstrony:
A01 Wektory (01 09)
A01 Wektory (01 12)
01 (10)
WSM 01 10 pl(1)
TI 01 10 30 T pl(1)
TI 01 10 29 T pl(2)
TI 01 10 09 B pl
01 10 Styczeń 1997 Niepodległe państwo Czeczenia
Egzamin Teoria Wykład 01 (10) 14 (15) v 0 12 63 BETA
133 01 (10)
TI 01 10 31 B pl(2)

więcej podobnych podstron