Projekt nalotu fotogrametrycznego : BW
I)Dane :
dx × dy = 18×18cm ---> 0,18m×0,18m ; m=8000 ; p =60% ; q=25% ; f=120mm--->0,012m ; V=275km/h ---> $\frac{275000m}{3600s}$ ; t=1/125s
II)Obliczamy :
W/H ; Bx , By , Dx , Dy , Z , Pm , Pn , NZ , t , s
III)Rozwiązanie :
a)wysokość lotu W/H
$\ \frac{1}{m} = \frac{f}{W}$ ; $\frac{1}{8000} = \frac{0,012m}{W}$ ; W = 8000 × 0, 012m = 96m
b1)baza podłużna Bx
$B_{x} = \frac{m \times d_{x} \times (100\% - p)}{100\%}\ ;\ B_{x} = \frac{8000 \times 0,18m \times (100\% - 60\%)}{100\%} = \frac{1440m \times 40\%}{100\%} = 576m$
b2)baza poprzeczna By
$$B_{y} = \frac{m \times d_{y} \times (100\% - q)}{100\%}\ ;\ B_{x} = \frac{8000 \times 0,18m \times (100\% - 25\%)}{100\%} = \frac{1440m \times 75\%}{100\%} = 1080m$$
c)zasięg zdjęcia Dx , Dy
Dx = dx × m ; Dx = 0, 18m × 8000 = 1440m
Dy = dy × m ; Dy = 0, 18m × 8000 = 1440m
d)zakładka Z
Z = 0, 1 × Dy ; Z=0,1×1440m=144m
e)powierzchnia modelu stereoskopowego Pm
Pm = (Dx−Bx) × Dy ; Pm = (1440m−576m) × 1440m = 1244160m2 ≈ 1, 244km2
f)powierzchnia dodana przez każde zdjęcie Pn
Pn = Bx × By ; Pn = 576m × 1080m = 622080m2 = 0, 622km2
g)liczba zdjęć NZ
$N_{Z_{C}} = N_{Z_{S}} \times N_{S}\ ;\ N_{Z_{S}} = \frac{L_{S}}{B_{x}} + 5\ ;\ N_{S} = \frac{L_{y}}{B_{y}}\ ;\left\lbrack L_{s} = D_{x}\ ;\ L_{y} = D_{y} \right\rbrack\ ;\ N_{Z_{C}} = (\frac{D_{x}}{B_{x}} + 5) \times \frac{D_{y}}{B_{y}}$
$N_{Z_{C}} = \left( \frac{1440m}{576m} + 5 \right) \times \frac{1440m}{1080m} = 7,5 \times 1,33 = 9,975 \approx 10\ zdjec$
h)interwał fotografowania t
$t = \frac{B_{x}}{V}\ ;\ t = \frac{576m}{275\frac{\text{km}}{h}} = 576m \times \frac{3600s}{275000m} = 7,54s$
$t = \frac{d_{x} \times m}{V} \times \frac{100\% - p}{100\%}\ ;\ t = \frac{0,18m \times 8000}{275\frac{\text{km}}{h}} \times \frac{100\% - 60\%}{100\%} = 1440m \times \frac{3600s}{275000m} \times \frac{40\%}{100\%} = \frac{10368}{1375}s \approx 7,54s$
i)rozmazanie obrazu s
$s = V \times t \times \frac{f}{W}\ ;\ s = \frac{275000m}{3600s} \times \frac{1}{125}s \times \frac{0,012m}{96m} = \frac{33}{432000}m = 0,00007638m = 0,076\text{mm}$
$s = \frac{V \times t}{m}\ ;\ s = \frac{\frac{275000m}{3600s} \times \frac{1}{125}s}{8000} = \frac{2750}{4500}m \times \frac{1}{8000} = 0,00007638m = 0,076\text{mm}$