DANE WYJŚCIOWE:
Obciążenie
P= 40 kN/m2Moduł sprężystości betonu
E = 31 • 106 kN/m2
Grubosć elementu
h = 0, 2 m
Współczynnik Poissona
$$\upsilon = \frac{1}{6}$$
$$D = \frac{E \bullet h^{3}}{12\left( 1 - \upsilon^{2} \right)} = \frac{31 \bullet 10^{6} \bullet {0,2}^{3}}{12\left( 1 - \frac{1}{6}^{2} \right)} = 21257,14\ kNm$$
$$\frac{P\Delta x^{4}}{D} = \frac{40 \bullet 1}{21257,14} = 0,00188\ \ m$$
WARUNKI BRZEGOWE
|
|
|
|
---|
Obliczenie wyznaczników
W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | W12 | W13 | W14 | W15 | W16 | W17 | W18 | W19 | W20 | W21 | W22 | W23 | W24 | W25 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 22 | -8 | 1 | 0 | 0 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | -8 | 21 | -8 | 1 | 0 | 2 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 1 | -8 | 21 | -8 | 1 | 0 | 2 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 1 | -8 | 21 | -8 | 0 | 0 | 2 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 1 | -8 | 20 | 0 | 0 | 0 | 2 | -8 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | -8 | 2 | 0 | 0 | 0 | 21 | -8 | 1 | 0 | 0 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 2 | -8 | 2 | 0 | 0 | -8 | 20 | -8 | 1 | 0 | 2 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 2 | -8 | 2 | 0 | 1 | -8 | 20 | -8 | 1 | 0 | 2 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 2 | -8 | 2 | 0 | 1 | -8 | 20 | -8 | 0 | 0 | 2 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 2 | -8 | 0 | 0 | 1 | -8 | 19 | 0 | 0 | 0 | 2 | -8 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
11 | 1 | 0 | 0 | 0 | 0 | -8 | 2 | 0 | 0 | 0 | 21 | -8 | 1 | 0 | 0 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 2 | 0 | 0 | -8 | 20 | -8 | 1 | 0 | 2 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
13 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 2 | 0 | 1 | -8 | 20 | -8 | 1 | 0 | 2 | -8 | 2 | 0 | 0 | 0 | 1 | 0 | 0 |
14 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 2 | 0 | 1 | -8 | 20 | -8 | 0 | 0 | 2 | -8 | 2 | 0 | 0 | 0 | 1 | 0 |
15 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 0 | 0 | 1 | -8 | 19 | 0 | 0 | 0 | 2 | -8 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | -8 | 2 | 0 | 0 | 0 | 21 | -8 | 1 | 0 | 0 | -8 | 2 | 0 | 0 | 0 |
17 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 2 | 0 | 0 | -8 | 20 | -8 | 1 | 0 | 2 | -8 | 2 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 2 | 0 | 1 | -8 | 20 | -8 | 1 | 0 | 2 | -8 | 2 | 0 |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 2 | 0 | 1 | -8 | 20 | -8 | 0 | 0 | 2 | -8 | 2 |
20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 0 | 0 | 1 | -8 | 19 | 0 | 0 | 0 | 2 | -8 |
21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | -8 | 2 | 0 | 0 | 0 | 20 | -8 | 1 | 0 | 0 |
22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 2 | 0 | 0 | -8 | 19 | -8 | 1 | 0 |
23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 2 | 0 | 1 | -8 | 19 | -8 | 1 |
24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 2 | 0 | 1 | -8 | 19 | -8 |
25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | -8 | 0 | 0 | 1 | -8 | 18 |
Tabela wyznaczników
m | mm | |
---|---|---|
W1 | 0,00073 | 0,73 |
W2 | 0,00155 | 1,55 |
W3 | 0,00199 | 1,99 |
W4 | 0,00190 | 1,90 |
W5 | 0,00121 | 1,21 |
W6 | 0,00155 | 1,55 |
W7 | 0,00339 | 3,39 |
W8 | 0,00439 | 4,39 |
W9 | 0,00416 | 4,16 |
W10 | 0,00261 | 2,61 |
W11 | 0,00199 | 1,99 |
W12 | 0,00439 | 4,39 |
W13 | 0,00570 | 5,70 |
W14 | 0,00538 | 5,38 |
W15 | 0,00335 | 3,35 |
W16 | 0,00190 | 1,90 |
W17 | 0,00416 | 4,16 |
W18 | 0,00538 | 5,38 |
W19 | 0,00507 | 5,07 |
W20 | 0,00316 | 3,16 |
W21 | 0,00121 | 1,21 |
W22 | 0,00261 | 2,61 |
W23 | 0,00335 | 3,35 |
W24 | 0,00316 | 3,16 |
W25 | 0,00198 | 1,98 |
Obliczenia momentów w przekroju XX-IX
$\mathbf{M}_{\mathbf{\text{XX}}} = - \frac{D}{\lambda^{2}} \bullet \left\lbrack W_{11"} - 2 \bullet W_{\text{XX}} + W_{11} + \nu \bullet \left( W_{\text{XIX}} - 2 \bullet W_{\text{XX}} + W_{\text{XXI}} \right) \right\rbrack = - \frac{21257,14}{1^{2}} \bullet \left\lbrack 0,00199 - - 2 \bullet 0 + 0,00199 + \frac{1}{6} \bullet \left( 0 - 2 \bullet 0 + 0 \right) \right\rbrack = - 84,60\ kNm$
$\mathbf{M}_{\mathbf{11}} = - \frac{D}{\lambda^{2}} \bullet \left\lbrack W_{\text{XX}} - 2 \bullet W_{11} + W_{12} + \nu \bullet \left( W_{16} - 2 \bullet W_{11} + W_{6} \right) \right\rbrack = - \frac{21257,14}{1^{2}} \bullet \left\lbrack 0 - 2 \bullet 0,00199 + + 0,00439 + \frac{1}{6} \bullet \left( 0,0019 - 2 \bullet 0,00199 + 0,00155 \right) \right\rbrack = - 6,84\ kNm$
$\mathbf{M}_{\mathbf{12}} = - \frac{D}{\lambda^{2}} \bullet \left\lbrack W_{11} - 2 \bullet W_{12} + W_{13} + \nu \bullet \left( W_{17} - 2 \bullet W_{12} + W_{7} \right) \right\rbrack = - \frac{21257,14}{1^{2}} \bullet \left\lbrack 0,00199 - \ \ \ \ \ \ \ \ - 2 \bullet 0,00439 + 0,00570 + \frac{1}{6} \bullet \left( 0,00416 - 2 \bullet 0,00439 + 0,00339 \right) \right\rbrack = 27,53\ kNm$
$\mathbf{M}_{\mathbf{13}} = - \frac{D}{\lambda^{2}} \bullet \left\lbrack W_{12} - 2 \bullet W_{13} + W_{14} + \nu \bullet \left( W_{18} - 2 \bullet W_{13} + W_{8} \right) \right\rbrack = - \frac{21257,14}{1^{2}} \bullet \left\lbrack 0,00439 - \ \ \ \ \ \ \ \ - 2 \bullet 0,00570 + 0,00538 + \frac{1}{6} \bullet \left( 0,00538 - 2 \bullet 0,00570 + 0,00439 \right) \right\rbrack = 40,42\ kNm$
$\mathbf{M}_{\mathbf{14}} = - \frac{D}{\lambda^{2}} \bullet \left\lbrack W_{13} - 2 \bullet W_{14} + W_{15} + \nu \bullet \left( W_{19} - 2 \bullet W_{14} + W_{9} \right) \right\rbrack = - \frac{21257,14}{1^{2}} \bullet \left\lbrack 0,00570 - \ \ \ \ \ \ \ \ \ - 2 \bullet 0,00538 + 0,00335 + \frac{1}{6} \bullet \left( 0,00507 - 2 \bullet 0,00538 + 0,00416 \right) \right\rbrack = 41,77\ kNm$
$\mathbf{M}_{\mathbf{15}} = - \frac{D}{\lambda^{2}} \bullet \left\lbrack W_{14} - 2 \bullet W_{15} + W_{\text{IX}} + \nu \bullet \left( W_{20} - 2 \bullet W_{15} + W_{10} \right) \right\rbrack = - \frac{21257,14}{1^{2}} \bullet \left\lbrack 0,00538 - \ \ \ \ \ \ \ - 2 \bullet 0,00335 + 0,0 + \frac{1}{6} \bullet \left( 0,00316 - 2 \bullet 0,00335 + 0,00361 \right) \right\rbrack = 31,35\ kNm$
MIX = 0, 0 kNm
Wykres momentów w przekroju XX-IX
Obliczenia sił tnących w przekroju XX-IX
$\mathbf{Q}_{\mathbf{11}} = - \frac{D}{2\lambda^{3}} \bullet \left\lbrack - W_{11"} + 2 \bullet W_{\text{XX}} - 2 \bullet W_{12} + W_{13} + \left( 2 - \upsilon \right) \bullet \left( - W_{\text{XIX}} + 2 \bullet W_{\text{XX}} - W_{\text{XXI}} + W_{17} - 2 \bullet W_{12} + W_{7} \right) \right\rbrack = - \frac{21257,14}{2 \bullet 1^{3}} \bullet \left\lbrack - 0,00199 + 2 \bullet 0 - 2 \bullet 0,00439 + 0,00570 + \left( 2 - \frac{1}{6} \right) \bullet \left( - 0 + \ \ \ \ + 2 \bullet 0 - 0 + 0,00416 - 2 \bullet 0,00439 + 0,00339 \right) \right\rbrack = 77,85\ \text{kN}$
$\mathbf{Q}_{\mathbf{12}} = - \frac{D}{2\lambda^{3}} \bullet \left\lbrack - W_{\text{XX}} + 2 \bullet W_{11} - 2 \bullet W_{13} + W_{14} + \left( 2 - \upsilon \right) \bullet \left( - W_{16} + 2 \bullet W_{11} - W_{6} + W_{18} - \ \ \ \ \ - 2 \bullet W_{13} + W_{8} \right) \right\rbrack = - \frac{21257,14}{2 \bullet 1^{3}} \bullet \left\lbrack - 0 + 2 \bullet 0,00199 - 2 \bullet 0,00570 + 0,00538 + \left( 2 - \frac{1}{6} \right) \bullet \left( - 0,0019 + + 2 \bullet 0,00199 - 0,00155 + 0,00538 - 2 \bullet 0,00570 + 0,00439 \right) \right\rbrack = 43,12\ \text{kN}$
$\mathbf{Q}_{\mathbf{13}} = - \frac{D}{2\lambda^{3}} \bullet \left\lbrack - W_{11} + 2 \bullet W_{12} - 2 \bullet W_{14} + W_{15} + \left( 2 - \upsilon \right) \bullet \left( - W_{17} + 2 \bullet W_{12} - W_{7} + W_{19} - \ \ \ \ \ \ - 2 \bullet W_{14} + W_{9} \right) \right\rbrack = - \frac{21257,14}{2 \bullet 1^{3}} \bullet \left\lbrack - 0,00199 + 2 \bullet 0,00439 - 2 \bullet 0,00538 + 0,00335 + + \left( 2 - \frac{1}{6} \right) \bullet \left( - 0,00416 + 2 \bullet 0,00439 - 0,00339 + 0,00507 - 2 \bullet 0,00538 + 0,00416 \right) \right\rbrack = 12,44\ \text{kN}$
$\mathbf{Q}_{\mathbf{14}} = - \frac{D}{2\lambda^{3}} \bullet \left\lbrack - W_{12} + 2 \bullet W_{13} - 2 \bullet W_{15} + W_{\text{IX}} + \left( 2 - \upsilon \right) \bullet \left( - W_{18} + 2 \bullet W_{13} - W_{8} + W_{20} - \ \ \ \ \ \ - 2 \bullet W_{15} + W_{10} \right) \right\rbrack = - \frac{21257,14}{2 \bullet 1^{3}} \bullet \left\lbrack - 0,00439 + 2 \bullet 0,00570 - 2 \bullet 0,00335 + 0 + \left( 2 - \frac{1}{6} \right) \bullet \left( - 0,00538 + 2 \bullet 0,00570 - 0,00439 + 0,00316 - 2 \bullet 0,00335 + 0,00261 \right) \right\rbrack = - 16,94\ \text{kN}$
$\mathbf{Q}_{\mathbf{15}} = - \frac{D}{2\lambda^{3}} \bullet \left\lbrack - W_{13} + 2 \bullet W_{14} - 2 \bullet W_{\text{IX}} + W_{15'} + \left( 2 - \upsilon \right) \bullet \left( - W_{19} + 2 \bullet W_{14} - W_{9} + W_{X} - 2 \bullet W_{\text{IX}} + W_{\text{VIII}} \right) \right\rbrack = - \frac{21257,14}{2 \bullet 1^{3}} \bullet \left\lbrack - 0,00570 + 2 \bullet 0,00538 - 2 \bullet 0 + 0,00335 + \left( 2 - \frac{1}{6} \right) \bullet \left( - 0,00570 + + 2 \bullet 0,00538 - 0,00416 + 0 - 2 \bullet 0 + 0 \right) \right\rbrack = - \ 47,99\ \text{kN}$
Wykres sił tnących w przekroju XX-IX