(c)′ =  0
(x)′ =  1            (cx)′ =  c
(x2)′= 2x
(x3)′ =  3x2
(xn)′= nxn − 1
$\left( \text{lnx} \right)^{'} = \ \frac{1}{x}$
(ex)′ =  ex
(sinx)′ =  cosx
(cosx)′ =   − sinx
$\left( \text{tgx} \right)^{'} = \ \frac{1}{\cos^{2}x}$
$\left( \text{ctgx} \right)^{'} = \ \frac{- 1}{\sin^{2}x}$
$\left( \sqrt{x} \right)^{'} = \ \frac{1}{2\sqrt{x}}$
(ax)′ =  axlna
${(log}_{a}x)' = \ \frac{1}{\text{xlna}}$
$\left( \frac{1}{x} \right)^{'} = \ - \frac{1}{x^{2}}$
Własności pochodnych
W1: [cf(x)]′ =  cf′(x)
W2: [f(x)+ −g(x)]′ =  f′(x) + −g′(x)
W3: [f(x)g(x)]′ =  f′(x)g(x) +  f(x)g′(x)
W4: $\left\lbrack \frac{f\left( x \right)}{g\left( x \right)} \right\rbrack^{'} = \ \frac{f^{'}\left( x \right)g\left( x \right) - \ f\left( x \right)g^{'}(x)}{g^{2}(x)}$
W5 (Pochodna funkcji złożonej): [f(g(x))]′ =  f′(g(x)) g′(x)
Własności całki nieoznaczonej:
W1: ∫cf(x)dx = c∫f(x)dx
W2: ∫[f(x)+g(x)]dx = ∫f(x)dx + / − ∫g(x)dx
W3: Całkowanie przez części
∫f′(x)g(x)dx = f(x)g(x) − ∫f(x)g′(x)dx
W4: Całkowanie przez podstawianie
∫f(x)dx = ∫f(φ(t))(φ′(t)dt)
Gdzie x=φ(t)-podstawiamy
∫dx = x + c, bo (x+c)′ = 1
$\int_{}^{}{xdx = \frac{1}{2}x^{2} + C,\ bo\left( \frac{x^{2}}{2} + C \right)^{'} = x}$
$\int_{}^{}{x^{2}dx = \frac{1}{3}x^{3} + C}$
$\int_{}^{}{x^{3}dx = \frac{1}{4}x^{4} + C}$
${\int_{}^{}\mathbf{x}}^{\mathbf{4}}\mathbf{dx =}\frac{\mathbf{x}^{\mathbf{n + 1}}}{\mathbf{n + 1}}\mathbf{+ C,\ n \neq 1}$
$\int_{}^{}{\frac{\text{dx}}{x} = lnx + C}$
∫sinxdx = −cosx + C
∫cosxdx = sinx + C
∫exdx = ex + C
$\int_{}^{}{a^{x}dx = \frac{a^{x}}{\text{lna}}}$
$\int_{}^{}{\frac{\text{dx}}{x^{2}} = - \frac{1}{x} + C}$
$\int_{}^{}{\frac{\text{dx}}{2\sqrt{x}} = \sqrt{x} + C}$
$\int_{}^{}{\frac{\text{dx}}{\sqrt{1 - x^{2}}} = arcsinx + C}$
$\int_{}^{}{\frac{- dx}{\sqrt{1 - x^{2}}} = arccosx + C}$
$\int_{}^{}{\frac{\text{dx}}{1 + x^{2}} = arctgx + C}$
$\int_{}^{}{\frac{f^{'}(x)}{f(x)}\text{dx}} = \ln\left( f\left( x \right) \right) + C$
f(x)=t, f’(x)dx = dt $\int_{}^{}{\frac{\text{dt}}{t} = \ln\left( t \right) + C}$
17. $\int_{}^{}{\frac{\text{dx}}{x^{2}a^{2}} = \frac{1}{a}arctg(\frac{x}{a})} + C$
18.$\int_{}^{}{e^{\text{dx}}\text{dx}} = \frac{1}{\propto}e^{\propto x} + C$
19.$\int_{}^{}{\frac{f^{'}(x)}{\sqrt{f(x)}}\text{dx}} = 2\sqrt{f(x)} + C$
6’.$\int_{}^{}\frac{\text{dx}}{x - a}\ \left\| x - a = t,\ dx = dt \right\|$
$$\int_{}^{}{\frac{\text{dt}}{t} = \ln\left( t \right) + C = \ln\left( x - a \right) + C}$$
20.∫tgxdx = −ln(cosx) + C
21.∫ctgxdx = ln(sinx) +  C
22.$\int_{}^{}\frac{\text{dx}}{\cos^{2}x} = tgx + C$
23.$\int_{}^{}\frac{\text{dx}}{\sin^{2}x} = - ctgx + C$