(c)'=0
(xn)'=nxn-1
(x)'=1
(a/x)'=-a/x2
(√x)'= 1/2√x
(ax)'=axln a
(ex)'=ex
(Logax)'=1/xlna
(ln x)' =1/x
(sinx)'=cosx
(cosx)'=-sinx
(tgx)'=1/cos2x
(ctg)'=-1/sin2x
(arcsinx)'=1/√1-x2
(arccosx)'=-1/√1-x2
(arctgx)'=1/√x2+1
(arcctgx)'=-1/√x2+1
Z def
F(x0+∆x)-f(x0)/∆x
A/∞=0 A/0=∞
Ln0>∞ ln1=0
Lne=1 ln∞>∞
|
0 |
30 |
45 |
60 |
90 |
|
0 |
Pi/6 |
Pi/4 |
Pi/3 |
Pi/2 |
(Arc)sinx |
0 |
½ |
√2/2 |
√3/2 |
1 |
(arc)cosx |
1 |
√3/2 |
√2/2 |
½ |
0 |
(arc)tg |
0 |
√3/3 |
1 |
√3 |
∞ |
(arc)ctg |
∞ |
√3 |
1 |
√3/3 |
0 |
S dx=x+c
S xndx=(1/n+1)xn+1+c
S xdx=(1/2)x2+c
S (1/x)dx=ln IxI+c
S axdx= ax/lna)+c
S exdx=ex+c
S sin xdx=-cosx+c
S cosxdx=sinx+c
S tgxdx=-ln IcosxI+c
S ctgxdx=ln IsinxI+c
S dx/cos2x=tgx+c
S dx/sim2x=-ctgx+c
S dx/x2-a2=1/2a)lnIx-a/x+aI+c
S dx/√a2-x2=arcsin x/a+c
S dx/√a2+q=ln Ix+√x2+qI+c