$$\text{f\ }\frac{+}{-}\text{\ \ }g = f^{'}\frac{+}{-}\ g'\ $$
c * f = c * f′
f * g = f′ * g + f * g′
$$\frac{f}{g}\ = \ \frac{f^{'}*g - f*g^{'}}{g^{2}}$$
$$\ln f = \ \frac{f^{'}}{f}$$
fc = c * fc − 1 * f′
$$f^{g} = \ f^{g}\ (\ \frac{f^{'}*g}{f} + g^{'}\ln f\ )$$
sinx = cosx
cosx = −sinx
$$tgx = \frac{1}{\cos^{2}x}$$
$$ctgx = - \frac{1}{\sin^{2}x}$$
$$arcsinx = \frac{1}{\sqrt{1 - x^{2}}}$$
$$arccosx = - \frac{1}{\sqrt{1 - x^{2}}}$$
$$arctgx = \frac{1}{1 + x^{2}}$$
$$arcctgx = - \frac{1}{1 + x^{2}}$$
$${\sqrt{x} = \frac{1}{2\sqrt{x}}\backslash n}{\sqrt[n]{x} = \frac{1}{n\sqrt[n]{x^{n - 1}}}}$$
$$\log_{a}x = \frac{1}{\text{xlna}}$$
$$lnx = \frac{1}{x}$$
c = 0
x = 1
xn = n xn − 1
ax + b = a
ax2 + bx + c = 2ax + b
$$\frac{a}{x} = - \frac{a}{x^{2}}$$
ex = ex
ax = axlna
xx = xx(1+lnx)
$${l\text{og}}_{a}x = \frac{1}{\text{xlna}}$$