Pochodne [wzory]


$$\text{f\ }\frac{+}{-}\text{\ \ }g = f^{'}\frac{+}{-}\ g'\ $$


c * f = c * f


f * g = f * g + f * g


$$\frac{f}{g}\ = \ \frac{f^{'}*g - f*g^{'}}{g^{2}}$$


$$\ln f = \ \frac{f^{'}}{f}$$


fc = c *  fc − 1 * f


$$f^{g} = \ f^{g}\ (\ \frac{f^{'}*g}{f} + g^{'}\ln f\ )$$


sinx = cosx


cosx = −sinx


$$tgx = \frac{1}{\cos^{2}x}$$


$$ctgx = - \frac{1}{\sin^{2}x}$$


$$arcsinx = \frac{1}{\sqrt{1 - x^{2}}}$$


$$arccosx = - \frac{1}{\sqrt{1 - x^{2}}}$$


$$arctgx = \frac{1}{1 + x^{2}}$$


$$arcctgx = - \frac{1}{1 + x^{2}}$$


$${\sqrt{x} = \frac{1}{2\sqrt{x}}\backslash n}{\sqrt[n]{x} = \frac{1}{n\sqrt[n]{x^{n - 1}}}}$$


$$\log_{a}x = \frac{1}{\text{xlna}}$$


$$lnx = \frac{1}{x}$$


c = 0


x = 1


xn = n xn − 1


ax + b = a


ax2 + bx + c = 2ax + b


$$\frac{a}{x} = - \frac{a}{x^{2}}$$


ex = ex


ax = axlna


xx = xx(1+lnx)


$$\text{f\ }\frac{+}{-}\text{\ \ }g = f^{'}\frac{+}{-}\ g'\ $$


c * f = c * f


f * g = f * g + f * g


$$\frac{f}{g}\ = \ \frac{f^{'}*g - f*g^{'}}{g^{2}}$$


$$\ln f = \ \frac{f^{'}}{f}$$


fc = c *  fc − 1 * f


$$f^{g} = \ f^{g}\ (\ \frac{f^{'}*g}{f} + g^{'}\ln f\ )$$


sinx = cosx


cosx = −sinx


$$tgx = \frac{1}{\cos^{2}x}$$


$$ctgx = - \frac{1}{\sin^{2}x}$$


$$arcsinx = \frac{1}{\sqrt{1 - x^{2}}}$$


$$arccosx = - \frac{1}{\sqrt{1 - x^{2}}}$$


$$arctgx = \frac{1}{1 + x^{2}}$$


$$arcctgx = - \frac{1}{1 + x^{2}}$$


$${\sqrt{x} = \frac{1}{2\sqrt{x}}\backslash n}{\sqrt[n]{x} = \frac{1}{n\sqrt[n]{x^{n - 1}}}}$$


$$\log_{a}x = \frac{1}{\text{xlna}}$$


$$lnx = \frac{1}{x}$$


c = 0


x = 1


xn = n xn − 1


ax + b = a


ax2 + bx + c = 2ax + b


$$\frac{a}{x} = - \frac{a}{x^{2}}$$


ex = ex


ax = axlna


xx = xx(1+lnx)


$$\text{f\ }\frac{+}{-}\text{\ \ }g = f^{'}\frac{+}{-}\ g'\ $$


c * f = c * f


f * g = f * g + f * g


$$\frac{f}{g}\ = \ \frac{f^{'}*g - f*g^{'}}{g^{2}}$$


$$\ln f = \ \frac{f^{'}}{f}$$


fc = c *  fc − 1 * f


$$f^{g} = \ f^{g}\ (\ \frac{f^{'}*g}{f} + g^{'}\ln f\ )$$


sinx = cosx


cosx = −sinx


$$tgx = \frac{1}{\cos^{2}x}$$


$$ctgx = - \frac{1}{\sin^{2}x}$$


$$arcsinx = \frac{1}{\sqrt{1 - x^{2}}}$$


$$arccosx = - \frac{1}{\sqrt{1 - x^{2}}}$$


$$arctgx = \frac{1}{1 + x^{2}}$$


$$arcctgx = - \frac{1}{1 + x^{2}}$$


$${\sqrt{x} = \frac{1}{2\sqrt{x}}\backslash n}{\sqrt[n]{x} = \frac{1}{n\sqrt[n]{x^{n - 1}}}}$$


$${l\text{og}}_{a}x = \frac{1}{\text{xlna}}$$


$$lnx = \frac{1}{x}$$


c = 0


x = 1


xn = n xn − 1


ax + b = a


ax2 + bx + c = 2ax + b


$$\frac{a}{x} = - \frac{a}{x^{2}}$$


ex = ex


ax = axlna


xx = xx(1+lnx)


$$\text{f\ }\frac{+}{-}\text{\ \ }g = f^{'}\frac{+}{-}\ g'\ $$


c * f = c * f


f * g = f * g + f * g


$$\frac{f}{g}\ = \ \frac{f^{'}*g - f*g^{'}}{g^{2}}$$


$$\ln f = \ \frac{f^{'}}{f}$$


fc = c *  fc − 1 * f


$$f^{g} = \ f^{g}\ (\ \frac{f^{'}*g}{f} + g^{'}\ln f\ )$$


sinx = cosx


cosx = −sinx


$$tgx = \frac{1}{\cos^{2}x}$$


$$ctgx = - \frac{1}{\sin^{2}x}$$


$$arcsinx = \frac{1}{\sqrt{1 - x^{2}}}$$


$$arccosx = - \frac{1}{\sqrt{1 - x^{2}}}$$


$$arctgx = \frac{1}{1 + x^{2}}$$


$$arcctgx = - \frac{1}{1 + x^{2}}$$


$${\sqrt{x} = \frac{1}{2\sqrt{x}}\backslash n}{\sqrt[n]{x} = \frac{1}{n\sqrt[n]{x^{n - 1}}}}$$


$$\log_{a}x = \frac{1}{\text{xlna}}$$


$$lnx = \frac{1}{x}$$


c = 0


x = 1


xn = n xn − 1


ax + b = a


ax2 + bx + c = 2ax + b


$$\frac{a}{x} = - \frac{a}{x^{2}}$$


ex = ex


ax = axlna


xx = xx(1+lnx)


$$\text{f\ }\frac{+}{-}\text{\ \ }g = f^{'}\frac{+}{-}\ g'\ $$


c * f = c * f


f * g = f * g + f * g


$$\frac{f}{g}\ = \ \frac{f^{'}*g - f*g^{'}}{g^{2}}$$


$$\ln f = \ \frac{f^{'}}{f}$$


fc = c *  fc − 1 * f


$$f^{g} = \ f^{g}\ (\ \frac{f^{'}*g}{f} + g^{'}\ln f\ )$$


sinx = cosx


cosx = −sinx


$$tgx = \frac{1}{\cos^{2}x}$$


$$ctgx = - \frac{1}{\sin^{2}x}$$


$$arcsinx = \frac{1}{\sqrt{1 - x^{2}}}$$


$$arccosx = - \frac{1}{\sqrt{1 - x^{2}}}$$


$$arctgx = \frac{1}{1 + x^{2}}$$


$$arcctgx = - \frac{1}{1 + x^{2}}$$


$${\sqrt{x} = \frac{1}{2\sqrt{x}}\backslash n}{\sqrt[n]{x} = \frac{1}{n\sqrt[n]{x^{n - 1}}}}$$


$$\log_{a}x = \frac{1}{\text{xlna}}$$


$$lnx = \frac{1}{x}$$


c = 0


x = 1


xn = n xn − 1


ax + b = a


ax2 + bx + c = 2ax + b


$$\frac{a}{x} = - \frac{a}{x^{2}}$$


ex = ex


ax = axlna


xx = xx(1+lnx)


$$\text{f\ }\frac{+}{-}\text{\ \ }g = f^{'}\frac{+}{-}\ g'\ $$


c * f = c * f


f * g = f * g + f * g


$$\frac{f}{g}\ = \ \frac{f^{'}*g - f*g^{'}}{g^{2}}$$


$$\ln f = \ \frac{f^{'}}{f}$$


fc = c *  fc − 1 * f


$$f^{g} = \ f^{g}\ (\ \frac{f^{'}*g}{f} + g^{'}\ln f\ )$$


sinx = cosx


cosx = −sinx


$$tgx = \frac{1}{\cos^{2}x}$$


$$ctgx = - \frac{1}{\sin^{2}x}$$


$$arcsinx = \frac{1}{\sqrt{1 - x^{2}}}$$


$$arccosx = - \frac{1}{\sqrt{1 - x^{2}}}$$


$$arctgx = \frac{1}{1 + x^{2}}$$


$$arcctgx = - \frac{1}{1 + x^{2}}$$


$${\sqrt{x} = \frac{1}{2\sqrt{x}}\backslash n}{\sqrt[n]{x} = \frac{1}{n\sqrt[n]{x^{n - 1}}}}$$


$$\log_{a}x = \frac{1}{\text{xlna}}$$


$$lnx = \frac{1}{x}$$


c = 0


x = 1


xn = n xn − 1


ax + b = a


ax2 + bx + c = 2ax + b


$$\frac{a}{x} = - \frac{a}{x^{2}}$$


ex = ex


ax = axlna


xx = xx(1+lnx)


Wyszukiwarka

Podobne podstrony:
POCHODNA WZORY(1)
pochodna wzory
pochodne wzory z serduszkami
pochodne wzory 2
pochodne wzory
Pochodne - wzory, POLITECHNIKA ŁÓDZKA, Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyk
pochodne wzory 4 id 364477 Nieznany
pochodne wzory
pochodna wzory
pochodne wzory domek id 364486 Nieznany
pochodne wzory domek
Pochodne wzory
pochodna wzory
POCHODNA WZORY(1)

więcej podobnych podstron