$$\left( \text{lnx} \right)^{'} = \frac{1}{x}$$
ex′ = ex
(ax)′ = axlna
(a♡)′ = a♡ • lna • ♡′
(e♡)′ = e♡ • ♡′
$$\left( \ln\heartsuit \right)^{'} = \frac{1}{\heartsuit} \bullet \heartsuit'$$
(sin♡)′ = cos♡•♡′
$$\left( \arccos\heartsuit \right)^{'} = \frac{- 1}{\sqrt{1 - \heartsuit^{2}}} \bullet \heartsuit'$$
(♡k)′ = k♡k − 1 • ♡′