|
|
|
(k)′ = k•k − 1 • ′
|
$\left( \frac{a}{x} \right)^{'} = - \frac{a}{x^{2}}$
|
$$\left( \frac{a}{} \right)^{'} = - \frac{a}{^{2}} \bullet '$$
|
$\left( \sqrt{\mathrm{x}} \right)^{\mathrm{'}}\mathrm{=}\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{x}}}\mathrm{;x > 0}$
|
$$\left( \sqrt{} \right)^{'} = \frac{1}{2\ \sqrt{}} \bullet '$$
|
|
$\operatorname{(ln})' = \frac{1}{} \bullet '$
|
|
$\left( \operatorname{} \right)^{'} = \frac{1}{\bullet \ln a} \bullet '$
|
|
(a)′ = alna • ′
|
|
(e)′ = e • ′
|
|
(sin)′=cos • ′
|
|
(cos)′= − sin • ′
|
|
$\left( \text{tg\ } \right)^{'} = \frac{1}{\cos^{2}} \bullet '$
|
|
$\left( \text{ctg\ } \right)^{'} = - \frac{1}{\sin^{2}} \bullet '$
|
|
$(arc\sin{)' = \frac{1}{\sqrt{1 -^{2}}} \bullet '}$
|
|
$(arc\cos{)' = \frac{- 1}{\sqrt{1 -^{2}}} \bullet '}$
|
|
$\left( \text{arc\ tg\ } \right)^{'} = \frac{1}{1 +^{2}} \bullet '$
|
|
$$\left( \text{arc\ ctg\ } \right)^{'} = \frac{- 1}{1 +^{2}} \bullet '$$
|