MIARECZKOWANIE KWASOWO ZASADOWE
Podział analizy chemicznej
Analiza chemiczna – badanie jakościowego (analiza jakościowa) i ilościowego (analiza ilościowa) składu chemicznego substancji.
Ze względu na naturę [edytuj]
W analizie chemicznej stosuje się metody chemiczne, fizyko-chemiczne i biochemiczne.
Metody chemiczne
polegają na przeprowadzeniu specyficznych reakcji chemicznych, których efekty makroskopowe pozwalają wnioskować o obecności i zawartości poszukiwanych składników w badanym materiale
W metodach fizykochemicznych
mierzy się określone wielkości fizyczne i ich zmiany pod wpływem zewnętrznych bodźców fizycznych dostarczanych do analizowanych próbek; najczęściej są to: prąd elektryczny, promieniowania elektromagnetyczne i inne formy promieniowania; otrzymane sygnały analityczne w postaci zmian określonych wielkości fizycznych – ich charakter i wielkość – pozwalają na ustalenie jakościowego i ilościowego składu próbki.
W metodach biochemicznych
wykorzystuje się procesy enzymatyczne i immunochemiczne.
Ze względu na rodzaj uzyskiwanej informacji [edytuj]
polega na ustaleniu, które związki chemiczne, pierwiastki, jony lub rodniki wchodzą w skład badanego materiału, bez ustalania jego ilości w substancji. Składniki identyfikuje się na podstawie reakcji charakterystycznych lub metodami instrumentalnymi. Współczesna analiza jakościowa wykorzystuje przede wszystkim metody instrumentalne: spektrometrię atomową emisyjną, fluorescencję rentgenowską, spektrometrię mas, neutronową analizę aktywacyjną, spektrometrię ramanowska i wiele innych.
umożliwia dokładne ustalenie struktury chemicznej czystych związków chemicznym, czyli liczby, rodzaju, i wzajemnego układu wiązań chemicznych składających się na cząsteczki. Współcześnie podstawowymi technikami w analizie strukturalnej jest NMR, FTIR, spektroskopia mas i rentgenografia strukturalna.
polega na oznaczeniu zawartości jednego, kilku, bądź wszystkich składników badanej próbki. Chemiczne metody analizy chemicznej związków nieorganicznych dzieli się na metody miareczkowe, wagowe (analiza wagowa) i instrumentalne. Analiza ilościowa może dostarczyć informacji o ilości określonego indywiduum chemicznego w analizowanej próbce, lub o proporcji pierwiastków chemicznych w niej występujących. Ten drugi rodzaj analizy nazywany jest elementarną. Zastosowanie metod instrumentalnych, np. spektroskopii w podczerwieni, nadfiolecie i zakresie widzialnym, spektrometrii Romana, spektrometrii mas, jądrowego rezonansu magnetycznego, umożliwia oznaczenie bardzo małych zawartości składników oraz automatyzację pomiarów.
Ze względu na ilość i sposób wykorzystania próbki [edytuj]
Tradycyjnie do analiz wykonywanych ręcznie potrzeba było minimum 100 mg do kilku gramów próbki. Rozwój technik analitycznych umożliwił jednak radykalne zmniejszenie tej ilości. Rozróżnia się tutaj:
makroanalizę - próbki do 10 mg
mikroanalizę - próbki poniżej 10 mg
ultramikroanalizę - próbki poniżej 1 mg.
Analizy, że względu na sposób pobierania i wykorzystania próbek dzieli się na:
inwazyjne - próbka ulega w trakcie analizy bezpowrotnemu zniszczeniu
bezinwazyjne - próbka nie ulega zniszczeniu - po wykonaniu analizy nie zmienia się jej struktura ani skład chemiczny; do technik bezinwazyjnych zalicza się też:
analizy zdalne - zwane też teleanalizami - próbki nie są wyodrębniane, lecz analizę tę dokonuje się na odległość bez jakiegokolwiek wyodrębniania próbki z masy analizowanego materiału;
przepływowe - strumień materiału przepuszcza się przez aparat pomiarowy zaopatrzony w odpowiednie detektory i dokonuje automatycznej analizy bez jego zatrzymywania.
Ze względu na rodzaj stosowanych technik [edytuj]
Analizy ręczne
tradycyjnie, analizy chemiczne, zarówno ilościowe jak i jakościowe wykonywane były w formie prostych testów, wykonywanych ręcznie przez chemika analityka, z użyciem prostej aparatury laboratoryjnej, wagi i wzroku badacza. Tego rodzaju analizy nadal się przeprowadzane, gdyż ich zaletą jest prostota.
Analizy instrumentalne
przeprowadzane są z użyciem złożonej aparatury, który zastępuje chemika zarówno w zakresie samego wykonania analizy jak i rejestracji, a nawet częściowej interpretacji wyników. Analiza instrumentalna jest bardziej kosztowna od ręcznej, ale pozwala na wyeliminowanie działalności analityka (i związanych z jego pracą błędów), zwiększenie liczby wykonywanych analiz w jednostce czasu, skrócenie czasu analizy, poprawę precyzji i dokładności oznaczeń, ponadto umożliwia analizę bez narażania zdrowia i życia analityka oraz w miejscach dla człowieka niedostępnych (teleanaliza).
Procedura wykonywania analiz inwazyjnych [edytuj]
Wykonanie właściwych pomiarów analitycznych w trybie inwazyjnym poprzedzają czynności wstępne:
pobranie średniej próbki,
przygotowanie jej do analizy: rozdrobnienie, oczyszczenie, przeprowadzenie do roztworu (w wyniku roztwarzania,rozpuszczania, ługowania),
oddzielenie lub zagęszczenie oznaczonego składnika (np. przez wytrącenie osadu, elektrolizę, ekstrakcję, destylację, chromatografię, wymianę jonową),
maskowanie przeszkadzających składników (np. za pomocą odczynników kompleksotwórczych, redukujących).
Zastosowanie [edytuj]
Analiza chemiczna jest szeroko stosowana w różnych dziedzinach nauki i gospodarce – służy do badania wód, powietrza, gleby, nawozów (ochrona środowiska, racjonalna gospodarka w rolnictwie i leśnictwie), próbek biologicznych, zarówno in vitro, jak i in vivo z minimalnym zakłóceniem normalnego funkcjonowania organizmu (diagnostyka lekarska), kontroli procesów technologicznych i oceny jakości produktów w przemyśle chemicznym, farmakologicznym, półprzewodników, metalurgicznym, spożywczym i górniczym.
Analiza miareczkowa
Miareczkowanie - chemiczna technika analizy ilościowej polegająca na dodawaniu roztworu - tzw. titranta z biurety w postaci kropel do roztworu zwanego analitem.
W trakcie miareczkowania titrant powinien reagować szybko i ilościowo z analitem, powodując zmiany określonych własności fizycznych analitu. Może to być np: zmiana barwy, zmiana przewodnictwa elektrycznego i wiele innych. Pomiar objętości wkroplonego titrantu, połączony z pomiarem lub obserwacją zmiany fizycznych własności analitu, umożliwia określenie dokładnego stężenia określonego związku chemicznego w analicie.
Reakcja stosowana przy miareczkowaniu powinna:
przebiegać szybko i ilościowo zgodnie z określonym, dobrze znanym równaniem
wprowadzany odczynnik nie może wchodzić w reakcję z innymi substancjami występującymi w roztworze
posiadać odpowiedni wskaźnik umożliwiający określenie końca miareczkowania.
Rodzaje miareczkowania [edytuj]
Ze względu na rodzaj reakcji w roztworze:
alkacymetria - czyli miareczkowanie oparte na reakcji zobojętniania; titrant reagując z analitem zmienia pH układu; zmiany pH można mierzyć za pomocą chemicznych wskaźników pH lub przy pomocy pH-metrów
redoksymetria - oparta jest na reakcji redoks, która powoduje albo zmianę barwy albo zmianę przewodnictwa elektrycznego (konduktometria)
kompleksometria - oparta jest na reakcjach, w których powstają zwykle barwne związki kompleksowe; najczęściej stosowaną tu techniką jest kompleksonometria[1]
metody strąceniowe - oparte na reakcjach tworzenia się trudno rozpuszczalnych osadów o ściśle określonym składzie, powstających szybko i łatwo opadających na dno
Klasyfikacja wg sposobu prowadzenia miareczkowania:
miareczkowanie bezpośrednie - wykorzystanie bezpośredniej reakcji między titrantem a oznaczanym związkiem chemicznym
miareczkowanie pośrednie - oznaczany związek nie reaguje bezpośrednio z titrantem, lecz pośrednio z inną substancją, a miareczkowany jest produkt tej reakcji
miareczkowanie odwrotne - do badanego roztworu dodaje się odmierzoną ilość roztworu mianowanego w nadmiarze, a następnie miareczkuje się odpowiednio dobranym titrantem.
3.Krzywa miareczkowania
Krzywe te wykreślane są w układzie współrzędnych: na osi odciętych odłożona jest objętość roztworu miareczkującego (do zobojętnienia), na osi rzędnych odłożona jest wartość pH roztworu w danym punkcie miareczkowania. Na krzywej można zaobserwować, że pH oznaczanego roztworu (mocnego kwasu lub mocnej zasady) zmienia się podczas miareczkowania nieznacznie i dopiero w pobliżu punktu równoważności następuje gwałtowny skok tej wartości. Duży skok pH w okolicy w punkcie równoważności, któremu odpowiada pH = 7, a więc odczyn obojętny, jest charakterystyczny dla tej właśnie reakcji.
4, reakcja kwasowo zasadowa
Reakcje kwasowo-zasadowe. Należą tu reakcje hydrolizy, izomeryzacji, alkilowania, krakingu. Katalizatory: kwasy i zasady Bronsteda oraz Lewisa, tlenki izolatory – tlenek glinu, tlenek magnezu, glinokrzemiany, halogenki metali + ślady wody.
Iloczyn jonowy wody
Iloczyn jonowy wody, iloczyn równowagowych stężeń jonów oksoniowych (H3O+) i hydroksylowych (OH-). W temperaturze 25oC iloczyn jonowy wody wynosi 10-14 mol/dm3, Stężenia obu rodzajów jonów w czystej wodzie są sobie równe i wynoszą 10-7mol/dm3. Ponieważ wartość iloczynu jonowego wody pozostaje stała w stałej temperaturze, wprowadzeniu do roztworu jonów oksoniowych towarzyszy zmniejszenie stężenia jonów hydroksylowych. Analogicznie - wzrost stężenia jonów hydroksylowych odbywa się kosztem zmniejszenia stężenia jonów oksoniowych. Wartość iloczynu jonowego wody można wyznaczyć za pomocą pomiaru przewodnictwa (pH).
6, Skala pH – ilościowa skala kwasowości i zasadowości roztworów wodnych związków chemicznych. Skala ta jest oparta na aktywności jonów hydroniowych [H3O+] w roztworach wodnych.
Tradycyjnie pH definiuje się jako:
pH = -log10[H3O+]
czyli minus logarytm dziesiętny aktywności jonów hydroniowych wyrażonych w molach na decymetr sześcienny. Współcześnie jednak nie jest to ścisła definicja tej wielkości.
Pojęcie pH wprowadził duński biochemik Søren Sørensen w 1909 r.[1] Oryginalnie pH zostało zdefiniowane jako minus logarytm stężenia jonów wodorowych (H+). Współczesne badania wykazały jednak, że wolne jony wodorowe (wolny proton) nigdy nie występują w roztworach wodnych, gdyż ulegają natychmiast solwatowaniu wg równania:
H+ + H2O → H3O+
W wielu podręcznikach jednak, dla uproszczenia, pomija się ten fakt i nadal podaje się starą definicję skali pH.
Definicja skali pH wg normy ISO i IUPAC [edytuj]
Ze względu na to, że pH roztworów mierzy się zazwyczaj metodami galwanometrycznymi norma ISO i Unia Chemii Czystej i Stosowanej (IUPAC) definiują współcześnie tę wielkość następująco[2][3]:
Wartość pH roztworu X, w którym jest zanurzone standardowe ogniwo galwaniczne zdefiniowane przez IUPAC, i dla którego zmierzono wartość pierwszej siły elektromotorycznej EX, wynosi[4]:
gdzie
F – Stała Faradaya
R – uniwersalna stała gazowa
T – temperatura w skali Kelvina.
ES i pH(S) – odpowiednio siła elektromotoryczna ogniwa standardowego zanurzonego w roztworze wzorcowym (np: w wodzie destylowanej) i pH tego roztworu w danej temperaturze podane w tabeli IUPAC[4].
Z definicji tej wynika, że pH roztworów jest jednostką bezwymiarową i ma charakter jedynie porównawczy, nie przekładający się bezpośrednio na stężenie czy aktywność jonów hydroniowych ani żadnych innych. Definicja ta jest np. wykorzystywana przy przygotowywaniu skal dla papierków uniwersalnych oraz pH-metrów.
Jednakże w pewnym wąskim zakresie rozcieńczonych roztworów o stężeniach mniejszych niż 0,1 mol/dm³, których pH mieści się w zakresie od 2 do 12 można przyjąć, że mierzone metodami galwanometrycznymi pH spełnia równanie[3]:
gdzie [H+] odpowiada stężeniu jonów hydroniowych, a γ1 to współczynnik aktywności tych jonów, a zatem przynajmniej w tym wąskim zakresie pH definicja "szkolna" i "precyzyjna" są z sobą w zgodzie.
Praktyczny sens skali pH [edytuj]
Aby zrozumieć sens tej skali trzeba się najpierw przyjrzeć temu, co dzieje się w chemicznie czystej wodzie. Cząsteczki wody (H2O) ulegają samorzutnej autodysocjacji, co prowadzi do powstawania jonów H3O+ i OH-:
2H2O ⇌ H3O+ + OH-
Reakcja ta jest odwracalna i ma równowagę przesuniętą silnie w lewo, czyli w stronę wody niezdysocjowanej[5]. Stężenie jonów H3O+ w czystej wodzie w temp. 25°C wynosi 10-7 mol/l[6], a jej pH = -log(10-7) = 7[7]. Ponieważ w czystej wodzie stężenie jonów wodorowych i wodorotlenowych jest takie samo, woda (czysta) ma odczyn obojętny (pH wynosi 7). W roztworach o pH < 7 stężenie jonów wodorowych jest większe niż wodorotlenowych i roztwory takie mają odczyn kwasowy, natomiast w roztworach o pH > 7 większe jest stężenie jonów wodorotlenowych, więc roztwory takie mają odczyn zasadowy.
Rozpuszczenie w wodzie silnego kwasu (np. HCl) prowadzi do jego dysocjacji:
HCl + H2O ⇌ H3O+ + Cl-
Dla tak silnego kwasu jak HCl równowaga tej reakcji jest niemal całkowicie przesunięta w stronę prawą (a więc w stronę jonów H3O+ i Cl-) dlatego po dodaniu do wody takiej ilości HCl, aby w jednym litrze uzyskanego w ten sposób roztworu znajdował się 1 mol HCl otrzymuje się stężenie jonów H3O+ równe 1 mol/l, co jak łatwo policzyć daje pH = 0[8].
Z drugiej strony w roztworze, w którym znajduje się 1 mol NaOH w jednym litrze występuje stężenie jonów OH- równe 1 mol/l. Jony OH- przesuwają silnie równowagę reakcji dysocjacji wody powodując, że stężenie jonów H3O+ spada do poziomu 10-14 mol/l, a zatem do pH = 14. Wynika to stąd, iż stały musi pozostać iloczyn jonowy wody, czyli iloczyn stężeń jonów H3O+ i OH-, równy 10-14 (w 25 °C)[9].
Praktyczny zakres skali pH [edytuj]
Ze względu na to, że skala pH została zdefiniowana pierwotnie dla rozcieńczonych roztworów kwasów, zasad i soli jej zastosowanie poza zakresem od 0 do 14 jest rzadko spotykane i prowadzi do zaskakujących, sprzecznych z intuicją rezultatów. Wynika to z faktu, że w zakresie wyższych stężeń, odczyn roztworów nie jest już zupełnie logarytmiczną funkcją stężenia jonów hydroniowych lecz raczej ich aktywności molowych. Na przykład roztwór kwasu siarkowego o stężeniu 7,622 mol/dm³ ma pH mierzone metodami galwanometrycznymi równe -3,13, co formalnie powinno odpowiadać hipotetycznemu stężeniu ok. 1348,96 mol/dm³. Takie niskie pH stężonych roztworów kwasu siarkowego wynika z faktu, że teoretycznie obliczony współczynnik aktywności jonów hydroniowych w takim roztworze przyjmuje bardzo wysoką wartość, rzędu 165[10].
W praktyce, przy wysokich stężeniach silnych kwasów i zasad ich reakcja z wodą traci na znaczeniu, a zyskuje autodysocjacja samych kwasów i zasad. Stała równowagi reakcji autodysocjacji kwasów i zasad jest zatem bardziej uniwersalną miarą ich mocy niż skala pH.
Z tych samych względów dla stężonych, wodnych układów kwasowo/zasadowych oraz dla roztworów kwasów i zasad w innych niż woda rozpuszczalnikach nie stosuje się skali pH, lecz minus logarytm ze stałej równowagi autodysocjacji kwasów i zasad, który jest oznaczany skrótami pKa i pKb. Związki chemiczne posiadające wyjątkowo małe pKa lub pKb są nazywane odpowiednio superkwasami i superzasadami.
Oznaczanie kwasowości [edytuj]
Do określania pH używa się wskaźników kwasowości, czyli substancji, których kolor zależy od pH roztworu. Do popularnych wskaźników należą:
W praktyce używa się zwykle papierków nasączonych mieszaniną substancji wskaźnikowych, które zmieniają kolor w szerokim zakresie pH. Chemiczne wskaźniki pH stosuje się także w miareczkowaniu do dokładnego określania stężenia roztworów związków chemicznych wykazujących odczyn kwasowy lub zasadowy.
W warunkach domowych jako wskaźniki można wykorzystać niektóre substancje pochodzenia roślinnego, np. wywar z liści czerwonej kapusty lub sok z czarnego bzu.
Dokładniejszych pomiarów pH dokonuje się metodą potencjometryczną, którą nazywa się pH-metrią. Wykorzystuje się w niej fakt, że zgodnie z teorią sformułowaną przez Nernsta, siła elektromotoryczna (SEM) ogniwa o identycznych elektrodach, lecz umieszczonych w roztworach o różnych stężeniach jonów hydroniowych, jest proporcjonalna do logarytmu stosunku tych stężeń. Tak więc, zanurzając jedną elektrodę w roztworze o znanym pH, a drugą w próbce, można na podstawie pomiaru SEM tak utworzonego ogniwa dokładnie ustalić pH próbki. Najdokładniejsze pomiary pH dokonuje się metodą miareczkowania potencjometrycznego, w której zobojętnia się mierzoną próbkę dokładnie odmierzanymi ilościami kwasu lub zasady, aż do uzyskania SEM = 0 ogniwa pH-metrycznego.
PH + pOH = 14
7, METODY POMIARY pH
Pomiar pH
Najpowszechniejszymi sposobami pomiaru wartości pH można dokonać przy użyciu pehametru albo wskaźników kwasowo - zasadowych.
Wskaźniki
Wskaźniki (indykatory) są słabymi kwasami lub zasadami o barwnych jonach w określonym zakresie pH,
a kolor zależy od odczynu.
Do określenia wartości pH używa się najczęściej następujących wskaźników:
lakmus
papierek uniwersalny
fenoloftaleina
oranż metylowy
czerwień metylowa
zieleń krezolowa
błękit bromotymolowy
Najwygodniejszym sposobem określenia odczynu jakiegoś roztworu jest zastosowanie papierka uniwersalnego (zawiera kilka wskaźników), ponieważ pozwala wyznaczyć pH w rozległym zakresie. Taki rodzaj pomiaru jest orientacyjny.
8,Roztwory buforowe
Bufory – roztwory, których wartość pH po dodaniu niewielkich ilości mocnych kwasów albo zasad, jak i po rozcieńczeniu wodą prawie się nie zmienia. Roztwór buforowy to mieszanina kwasu i zasady czyli mieszanina protonodawcy i protonobiorcy według teorii Brönsteda.
Spis treści [ukryj] |
---|
Mechanizm działania buforów [edytuj]
Mechanizm działania buforu najłatwiej jest prześledzić na przykładzie układu słabego kwasu i komplementarnej do niego soli. W tym przypadku głównym źródłem silnej zasady (A-) nie jest słabo dysocjujący kwas lecz mocno zdysocjowana sól (XA):
XA ↔ X+(aq) + A-(aq) (1)
Niezależnie od wyjściowych składników bufora, po ich rozpuszczeniu w wodzie i częściowej dysocjacji tworzy się równowaga słabego kwasu (HA) i sprzężonej z nim mocnej zasady (A-):
HA(aq) + H2O ↔ H3O+(aq) + A-(aq) (2)
która jest odpowiedzialna za odporność buforu na zmiany pH.
Ze względu na dużą ilość jonów A- dostarczanych w reakcji (1) przez sól, równowaga opisana równaniem (2) jest bardzo silnie przesunięta w stronę kwasu (HA). Można powiedzieć, że w tego rodzaju buforze niemal cała ilość jonów A- pochodzi z soli, zaś słaby kwas (HA) pozostaje w roztworze w formie prawie nie zdysocjowanej. Zadaniem soli jest więc w sumie blokowanie dysocjacji słabego kwasu.
W momencie dodania do roztworu buforowego silnej zasady, reaguje ona z jonami hydroniowymi (H3O+(aq)), które jednak są natychmiast regenerowane przez dysocjację kwasu (HA), którą uruchamia właśnie fakt znikania jonów hydroniowych w równowadze opisanej równaniem (2). W momencie dodania silnego kwasu, silna zasada sprzężona (A-), która występuje cały czas w dużym stężeniu po prostu reaguje z tym kwasem i w rezultacie pH całego układu się nie zmienia.
Pojemność buforowa [edytuj]
Naturalnie, cały układ buforujący nie jest skuteczny w nieskończoność. Każdy bufor posiada swoją pojemność, zwaną pojemnością buforową β, która jest warunkowana stałą równowagi głównej reakcji buforowej, oraz stężeniem czynnika słabo dysocjującego. Na przykład jeśli do roztworu bufora złożonego ze słabego kwasu i jego soli, dodamy tyle silnej zasady, że spowoduje ona całkowitą dysocjację słabego kwasu (HA), w reakcji (2) to dalsze dodawanie tej zasady spowoduje już taką zmianę pH jaka by następowała bez obecności bufora. Pojemność buforowa zależy od ogólnego stężenia kwasu i jego soli. Maksymalna pojemność wzrasta wraz z ogólnym stężeniem i nie zależy od mocy kwasu[1].
Definicja [edytuj]
Pojemność buforowa zdefiniowana jest jako:
gdzie:
Δn – ilość moli dodanego mocnego kwasu lub zasady (w praktyce podaje się dla 1 dm³ buforu, (Δn/V))
ΔpH – zmiana pH wywołana dodaniem tej ilości kwasu lub zasady
Pojemność buforowa (jej wartość jest zależna od pH) określa więc wrażliwość określonej ilości roztworu na dodawanie mocnego kwasu lub zasady, np. zmiana pH o 0,01 w wyniku dodania 0,006 mola kwasu lub zasady oznacza β=0,6 mol.
Wzór van Slyke'a [edytuj]
Wzór van Slyke'a pozwala obliczyć pojemność buforową β jako funkcję pH roztworu, dla układu typu: HA + A- (łącznie z obszarem nadmiaru mocnego kwasu lub nadmiaru mocnej zasady):
gdzie:
C = [HA] + [A − ] – łączne stężenie słabego kwasu i jego soli
Ka – stała dysocjacji kwasu HA
Największa pojemność buforowa pojawia się w obszarze buforowym dla pH = pKa oraz dla dużych nadmiarów mocnego kwasu lub zasady (daleko poza obszarem buforowym).
Uproszczony wzór van Slyke'a pozwala obliczyć pojemność buforową β jako funkcję pH roztworu, dla układu typu: HA + A- (tylko w obszarze bufora w pobliżu pKa, bez obszaru nadmiaru mocnego kwasu lub nadmiaru mocnej zasady):
Zastosowania i rodzaje buforów [edytuj]
Roztwory buforowe służą do utrzymania stosunkowo stałego odczynu roztworów. Stosuje się je do wielu przemysłowych procesów, wymagających utrzymywania w miarę stałego pH – np. przy produkcji barwników, leków syntetycznych oraz w procesach fermentacyjnych, a także w poligrafii, przy druku w technice offsetowej. Wiele buforów jest też stosowanych do kontrolowania pH gotowych produktów spożywczych, kosmetyków i leków. Niektóre bufory (np. boranowy) są same stosowane jako substancje lecznicze – np. do przemywania poparzonej skóry lub oczu.
9,Hydroliza wodnych roztworow wodnych
Reakcje hydrolizy soli polegają na reakcji jonów tych soli z wodą. Reakcja ta powoduje, że roztwory niektórych soli wykazują odczyn słabo kwasowy, innych słabo zasadowy, a jeszcze innych obojętny. Ponieważ są to reakcje jonowe, więc hydrolizie ulegają tylko te sole, które po przereagowaniu z wodą utworzą słaby elektrolit:
- sól słabego kwasu i mocnej zasady, np.
Jest to hydroliza anionowa. Odczyn wodnego roztworu takiej soli jest zasadowy.
- sól mocnego kwasu i słabej zasady, np.
Jest to hydroliza kationowa. Odczyn wodnego roztworu takiej soli jest kwasowy.
- sól słabego kwasu i słabej zasady, np.
Jest to hydroliza kationowo-anionowa. Odczyn wodnego roztworu takiej soli jest albo obojętny, albo słabo kwasowy (kwaśny), albo słabo zasadowy, w zależności od tego, który z produktów tej reakcji jest lepiej zdysocjowany.
Sole mocnych kwasów i mocnych zasad nie ulegają hydrolizie. Ich odczyn w roztworach wodnych jest obojętny.