UNIWERSYTET
TECHNOLOGICZNO – PRZYRODNICZY
im. Jana i Jędrzeja Śniadeckich
w Bydgoszczy
PODSTAWY INŻYNIERII
RUCHU
„Obliczenie długości drogi hamowania na zatrzymanie przed przeszkodą”.
Krystian Szulerecki
Transport, sem IV
Grupa F
1. Cel ćwiczenia:
Celem ćwiczenia było obliczenie długości drogi hamowania na zatrzymanie przed przeszkodą.
2. Dobór danych:
Klasa drogi – D
Rodzaj terenu – niezabudowany
Prędkość projektowa - $30\frac{\text{km}}{h}$ = $8,3\ \frac{m}{s}$
Pochylenie – 12%
Współczynnik przyczepności podłużnej – 1
Pochylenie podłużne – „-”
3. Obliczenia:
$$\mu_{1max} = 4,5*\left( \frac{8,3}{100} \right)^{2} - 3,204*\frac{8,3}{100} + 0,75 = 0,515$$
$$L_{z(1)} = L_{r} + L_{h} = 0,278*2*30 + \frac{30^{2}}{254*\left( 0,515*1 - 0,01*12 \right)} = 25,65\ \lbrack m\rbrack$$
$$L_{z(3)} = \frac{30}{3,6} + \frac{30^{2}}{254*(0,95*0,75 + 0,016 - 0,01*12)} = 24,16\ \lbrack m\rbrack$$
b=$\ 6\ \frac{m}{s^{2}}$
$$L_{z(2)} = L_{r} + L_{h} = 0,278*2*30 + \frac{30^{2}}{254*\left( \frac{6}{9,81} - 0,01*12 \right)} = 23,89\ \lbrack m\rbrack$$
b=$\ 5,5\ \frac{m}{s^{s}}$
$$L_{z(2)} = L_{r} + L_{h} = 0,278*2*30 + \frac{30^{2}}{254*\left( \frac{5,5}{9,81} - 0,01*12 \right)} = 24,72\ \lbrack m\rbrack$$
b= $4\frac{m}{s^{2}}$
$$L_{z(2)} = L_{r} + L_{h} = 0,278*2*30 + \frac{30^{2}}{254*\left( \frac{4}{9,81} - 0,01*12 \right)} = 28,99\ \lbrack m\rbrack$$
b= $3,5\ \frac{m}{s^{2}}$
$$L_{z(2)} = L_{r} + L_{h} = 0,278*2*30 + \frac{30^{2}}{254*\left( \frac{3,5}{9,81} - 0,01*12 \right)} = 31,64\ \lbrack m\rbrack$$
4. Tabela z wynikami:
Opóźnienie
|
Droga zatrzymania |
---|---|
Lz1 [m] |
|
6 | 25,65 |
5,5 | |
4 | |
3,5 |
5. Wnioski:
Droga hamowania zależy od wielu współczynników. Najważniejszymi z nich są przede wszystkim: czas reakcji kierowcy, prędkość z jaką się poruszamy, rodzaj nawierzchni. Z obliczeń dowiedziałem się, jaka długa jest droga hamowania dla prędkości $30\ \frac{\text{km}}{h}$ . Odległość ta wyniosła około 25 metrów.
6. Protokół z zajęć: