mech

Rysunek:

Liczba sztywnych węzłów (1) i (2): w = 2 → φ1, φ2

Liczba możliwych przesuwów: p = 3t − 2p − r = 3 • 5 − 2 • 3 − 8 = 1 → ψ

Stopień geometrycznej niewyznaczalności: g = w + p = 2 + 1 = 3

Łańcuch kinematyczny:

Kąty obrotów:


w3 = w5 = w


w1 = w2 = w4 = 0

Układ podstawowy:

Zablokowano jeden przesuw w kierunku poziomym i dwa obroty.

Przyjęto kąty obrotu przeciwnie do ruchu wskazówek zegara:

Kąty obrotów cięciw pręta:


ψ1A = 0;  ψ1B = ψ;  ψ1C = 0;  ψ12 = 0;  ψ2D = ψ

Równania pracy sił wirtualnych:


$$1) - \overset{\overline{}}{\varphi_{1}}\left( M_{1A} + M_{1B} + M_{1C} + M_{12} \right) = 0$$


$$2)\ - \overset{\overline{}}{\varphi_{2}}\left( M_{21} + M_{2D} - 5ql^{2} \right) = 0$$


$$3)\ \left( M_{1A} + M_{A1} \right) \bullet \overset{\overline{}}{\psi_{1A}} + M_{1B} \bullet \overset{\overline{}}{\psi_{1B}} + M_{1C} \bullet \overset{\overline{}}{\psi_{1C}} + \left( M_{12} + M_{21} \right) \bullet \overset{\overline{}}{\psi_{12}} + \left( M_{2D} + M_{D2} \right) \bullet \overset{\overline{}}{\psi_{2D}} + 6q \bullet 6l \bullet 3l \bullet \overset{\overline{}}{\psi_{1B}} + \frac{11}{2}\sqrt{2}ql \bullet 3\sqrt{2}ql \bullet \overset{\overline{}}{\psi_{1C}} = 0$$

Tu coś pojebałem, u mnie i tak się zeruje, ale powinno być inaczej to na czerwono.


$$3)\ M_{1B} \bullet \overset{\overline{}}{\psi_{1B}} + \left( M_{2D} + M_{D2} \right) \bullet \overset{\overline{}}{\psi_{2D}} + 6q \bullet 6l \bullet 3l \bullet \overset{\overline{}}{\psi_{1B}} = 0$$

Zakładamy, że kąty są jednostkowe:


$$\overset{\overline{}}{\varphi_{1}} = \overset{\overline{}}{1};\ \ \ \ \ \ \overset{\overline{}}{\varphi_{2}} = \overset{\overline{}}{1};\ \ \ \ \ \ \overset{\overline{}}{\psi} = \overset{\overline{}}{1}$$


1)−(M1A+M1B+M1C+M12) = 0     /•(−1)   ⇒   M1A + M1B + M1C + M12 = 0


2)  − (M21+M2D−5ql2) = 0     /•(−1)   ⇒   M21 + M2D − 5ql2 = 0


3) M1B + M2D + MD2 + 6q • 6l • 3l = 0   ⇒   M21 + M2D − 5ql2 = 0

Wzory transformacyjne:

$M_{1B}^{0} = \frac{1}{8} \bullet 6q \bullet \left( 6l \right)^{2} = 27ql^{2}$


$$M_{1C}^{0} = - \frac{3}{16} \bullet \frac{11}{2}\sqrt{2}ql \bullet 6\sqrt{2}l = - \frac{99}{8}ql^{2}$$


$$M_{1B} = \frac{3EJ}{6l} \bullet \left( \varphi_{1} - \psi_{1B} \right) + M_{1B}^{0} = \frac{1}{2} \bullet \frac{\text{EJ}}{l} \bullet \left( \varphi_{1} - \psi \right) + 27ql^{2}$$


$$M_{1C} = \frac{3\sqrt{2}\text{EJ}}{6\sqrt{2}l} \bullet \left( \varphi_{1} - \psi_{1C} \right) + M_{1C}^{0} = \frac{1}{2} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{1} - \frac{99}{8}ql^{2}$$


$$M_{12} = \frac{2EJ}{6l} \bullet \left( 2\varphi_{1} + \varphi_{2} - 3\psi_{12} \right) = \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2\varphi_{1} + \varphi_{2} \right)$$


$$M_{21} = \frac{2EJ}{6l} \bullet \left( 2\varphi_{2} + \varphi_{1} - 3\psi_{12} \right) = \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2\varphi_{2} + \varphi_{1} \right)$$


$$M_{2D} = \frac{2EJ}{6l} \bullet \left( 2\varphi_{2} + \varphi_{D} - 3\psi_{2D} \right) = \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2\varphi_{2} - 3\psi \right)$$


$$M_{D2} = \frac{2EJ}{6l} \bullet \left( 2\varphi_{D} + \varphi_{2} - 3\psi_{2D} \right) = \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( \varphi_{2} - 3\psi \right)$$


$$M_{1A} = \frac{2EJ}{5l} \bullet \left( 2\varphi_{1} + \varphi_{A} - 3\psi_{1A} \right) = \frac{4}{5} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{1}$$


$$M_{A1} = \frac{2EJ}{5l} \bullet \left( 2\varphi_{A} + \varphi_{1} - 3\psi_{1A} \right) = \frac{2}{5} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{1}$$

Momenty MA1 oraz M1A przyjęto jak dla utwierdzeń, ponieważ siły normalne mają pomijalny wpływ na odkształcenia ram.


1) M1A + M1B + M1C + M12 = 0


2) M21 + M2D − 5ql2 = 0


3) M1B + M2D + MD2 + 108ql2 = 0

Podstawienie wartości momentów do równań:


$$1)\ \frac{4}{5} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{1} + \frac{1}{2} \bullet \frac{\text{EJ}}{l} \bullet \left( \varphi_{1} - \psi \right) + 27ql^{2} + \frac{1}{2} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{1} - \frac{99}{8}ql^{2} + \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2\varphi_{1} + \varphi_{2} \right) = 0$$


$$2)\ \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2\varphi_{2} + \varphi_{1} \right) + \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2\varphi_{2} - 3\psi \right) - 5ql^{2} = 0$$


$$3)\ \frac{1}{2} \bullet \frac{\text{EJ}}{l} \bullet \left( \varphi_{1} - \psi \right) + 27ql^{2} + \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2\varphi_{2} - 3\psi \right) + \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( \varphi_{2} - 3\psi \right) + 108ql^{2} = 0$$


$$1)\ \frac{37}{15} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{1} + \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{2} - \frac{1}{2} \bullet \frac{\text{EJ}}{l} \bullet \ \psi + \frac{117}{8}\text{\ q}l^{2} = 0$$


$$2)\ \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{1} + \frac{4}{3} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{2} - \frac{\text{EJ}}{l} \bullet \ \psi - 5ql^{2} = 0$$


$$3)\ \ \frac{1}{2} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{1} + \frac{\text{EJ}}{l} \bullet \varphi_{2} - \frac{5}{2} \bullet \frac{\text{EJ}}{l} \bullet \ \psi + 135ql^{2} = 0$$

Poniższa macierz musi być symetryczna:


$$\begin{bmatrix} \frac{37}{15} & \frac{1}{3} & - \frac{1}{2} \\ \frac{1}{3} & \frac{4}{3} & - 1 \\ \frac{1}{2} & 1 & - \frac{5}{2} \\ \end{bmatrix}\begin{bmatrix} \varphi_{1} \\ \varphi_{2} \\ \psi \\ \end{bmatrix} + \begin{bmatrix} \frac{117}{8} \\ - 5 \\ 135 \\ \end{bmatrix} \bullet \frac{ql^{3}}{\text{EJ}} = 0$$

Mnożymy dolne wartości przez (-1):


$$\begin{bmatrix} \frac{37}{15} & \frac{1}{3} & - \frac{1}{2} \\ \frac{1}{3} & \frac{4}{3} & - 1 \\ - \frac{1}{2} & - 1 & \frac{5}{2} \\ \end{bmatrix}\begin{bmatrix} \varphi_{1} \\ \varphi_{2} \\ \psi \\ \end{bmatrix} + \begin{bmatrix} \frac{117}{8} \\ - 5 \\ - 135 \\ \end{bmatrix} \bullet \frac{ql^{3}}{\text{EJ}} = 0$$


$$\varphi_{1} = 1,681\frac{ql^{3}}{\text{EJ}};\ \ \ \ \ \varphi_{2} = 62,974\frac{ql^{3}}{\text{EJ}};\ \ \ \ \ \psi = 79,526\frac{ql^{3}}{\text{EJ}}$$

Podstawienie wartości kątów do wzorów na momenty:


$$M_{1B} = \frac{1}{2} \bullet \frac{\text{EJ}}{l} \bullet \left( 1,681\frac{ql^{3}}{\text{EJ}} - 79,526\frac{ql^{3}}{\text{EJ}} \right) + 27ql^{2} = - 11,923\ ql^{2}$$


$$M_{1C} = \frac{1}{2} \bullet \frac{\text{EJ}}{l} \bullet 1,681\frac{ql^{3}}{\text{EJ}} - \frac{99}{8}ql^{2} = - 11,535ql^{2}$$


$$M_{12} = \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2 \bullet 1,681\frac{ql^{3}}{\text{EJ}} + 62,974\frac{ql^{3}}{\text{EJ}} \right) = 22,112ql^{2}$$


$$M_{21} = \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2 \bullet 62,974\frac{ql^{3}}{\text{EJ}} + 1,681\frac{ql^{3}}{\text{EJ}} \right) = 42,543ql^{2}$$


$$M_{2D} = \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2 \bullet 62,974\frac{ql^{3}}{\text{EJ}} - 3 \bullet 79,526\frac{ql^{3}}{\text{EJ}} \right) = - 37,543ql^{2}$$


$$M_{D2} = \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 62,974\frac{ql^{3}}{\text{EJ}} - 3 \bullet 79,526\frac{ql^{3}}{\text{EJ}} \right) = - 58,535ql^{2}$$


$$M_{1A} = \frac{4}{5} \bullet \frac{\text{EJ}}{l} \bullet 1,681\frac{ql^{3}}{\text{EJ}} = 1,345ql^{2}$$


$$M_{A1} = \frac{2}{5} \bullet \frac{\text{EJ}}{l} \bullet 1,681\frac{ql^{3}}{\text{EJ}} = 0,672ql^{2}$$

Siły tnące:


$$\sum_{}^{}M_{1} = 0:\ T_{A1} \bullet 5l - M_{A1} - M_{1A} = 0$$


$$T_{A1} = \frac{M_{1A} + M_{A1}}{5l} = \frac{1,345ql^{2} + 0,672ql^{2}}{5l} = 0,403ql$$


$$\sum_{}^{}y = 0: - T_{A1} + T_{1A} = 0$$


TA1 = T1A = 0, 403ql


$$\sum_{}^{}M_{1} = 0:\ T_{21} \bullet 6l - M_{21} - M_{12} = 0$$


$$T_{21} = \frac{M_{21} + M_{12}}{6l} = \frac{42,543ql^{2} + 22,112ql^{2}}{6l} = 10,776ql$$


$$\sum_{}^{}y = 0: - T_{12} + T_{21} = 0$$


T12 = T21 = 10, 776ql


$$\sum_{}^{}M_{2} = 0: - T_{D2} \bullet 6l + M_{D2} + M_{2D} = 0$$


$$T_{D2} = \frac{M_{D2} + M_{2D}}{6l} = \frac{58,535ql^{2} + 37,543ql^{2}}{6l} = 16,013ql$$


$$\sum_{}^{}x = 0: - T_{D2} + T_{2D} = 0$$


TD2 = T2D = 16, 013ql


$$\sum_{}^{}M_{B} = 0:T_{1B} \bullet 6l + M_{1B} - 6q \bullet 6l \bullet 3l = 0$$


$$T_{1B} = \frac{{- M}_{1B} + 108ql^{2}}{6l} = \frac{- 11,923ql^{2} + 108ql^{2}}{6l} = 16,013ql$$


$$\sum_{}^{}x = 0:{- T}_{1B} - T_{B1} + 36ql = 0$$


TB1 = 36ql − 16, 013ql = 19, 987ql


$$\sum_{}^{}M_{C} = 0: - T_{1C} \bullet 6\sqrt{2}l + M_{1C} + \frac{11}{2}\sqrt{2}ql \bullet 3\sqrt{2}l = 0$$


$$T_{1C} = \frac{M_{1C} + 33ql^{2}}{6\sqrt{2}l} = \frac{11,535ql^{2} + 33ql^{2}}{6\sqrt{2}l} = 5,249ql$$


$$\sum_{}^{}x = 0:T_{1C} + T_{C1} - \frac{11}{2}\sqrt{2}ql = 0$$


$$T_{C1} = \frac{11}{2}\sqrt{2}ql - 5,249ql = 2,529ql$$

Siły normalne:


N1A = NA1 = 0


N2D = ND2 = T21 = 10, 776ql


N12 = N12 = T2D = 16, 013ql


NC1 = TC1 = 2, 529ql


N1C = T1C = 5, 249ql


$$N_{1B} = N_{B1} = T_{1A} - T_{1C} \bullet \sqrt{2} + T_{12}$$


$$N_{1B} = N_{B1} = 0,403ql + 5,249ql \bullet \sqrt{2} - 10,776ql = = - 2,950ql$$


Wyszukiwarka

Podobne podstrony:
KOTŁY OKRĘTOWE ZALICZENIE II MECH
frakcje gramulometryczne -sklad mech, gleboznawstwo
PŁYNY, Studia, Mech. płynów
Pytania z mech.gruntow GIG, AGH, Mechanika Gruntów
Lab. mech. płynów-Wizualizacja opływu walca w kanaliku, Mechanika Płynów pollub(Sprawozdania)
Egz mech 2(1), Studia, SiMR, II ROK, III semestr, Mechanika Ogólna II, Mechanika 2, Mechanika
Mech- Badanie zależności współczynnika lepkości cieczy od te, Sprawozdania - Fizyka
ME CHAR MECH
Mój projekt z mech gruntow
WEiP spr mech pł
mech w 1 2
mech grunt
montaz i wymina mech wc 5pmjm7sxp3m43ep7pp2pi2luufib2tiiyjs56dy 5PMJM7SXP3M43EP7PP2PI2LUUFIB2TIIYJS5
3 ZPiUAPP3 Mech
ne spr mech 3 2
mech 2a id 290414 Nieznany
MECH 2013 SV
Egz mech 2 id 151049 Nieznany
listy zadan mech plynow0002

więcej podobnych podstron