Rysunek:
Liczba sztywnych węzłów (1) i (2): w = 2 → φ1, φ2
Liczba możliwych przesuwów: p = 3t − 2p − r = 3 • 5 − 2 • 3 − 8 = 1 → ψ
Stopień geometrycznej niewyznaczalności: g = w + p = 2 + 1 = 3
Łańcuch kinematyczny:
Kąty obrotów:
w3 = w5 = w
w1 = w2 = w4 = 0
Układ podstawowy:
Zablokowano jeden przesuw w kierunku poziomym i dwa obroty.
Przyjęto kąty obrotu przeciwnie do ruchu wskazówek zegara:
Kąty obrotów cięciw pręta:
ψ1A = 0; ψ1B = ψ; ψ1C = 0; ψ12 = 0; ψ2D = ψ
Równania pracy sił wirtualnych:
$$1) - \overset{\overline{}}{\varphi_{1}}\left( M_{1A} + M_{1B} + M_{1C} + M_{12} \right) = 0$$
$$2)\ - \overset{\overline{}}{\varphi_{2}}\left( M_{21} + M_{2D} - 5ql^{2} \right) = 0$$
$$3)\ \left( M_{1A} + M_{A1} \right) \bullet \overset{\overline{}}{\psi_{1A}} + M_{1B} \bullet \overset{\overline{}}{\psi_{1B}} + M_{1C} \bullet \overset{\overline{}}{\psi_{1C}} + \left( M_{12} + M_{21} \right) \bullet \overset{\overline{}}{\psi_{12}} + \left( M_{2D} + M_{D2} \right) \bullet \overset{\overline{}}{\psi_{2D}} + 6q \bullet 6l \bullet 3l \bullet \overset{\overline{}}{\psi_{1B}} + \frac{11}{2}\sqrt{2}ql \bullet 3\sqrt{2}ql \bullet \overset{\overline{}}{\psi_{1C}} = 0$$
Tu coś pojebałem, u mnie i tak się zeruje, ale powinno być inaczej to na czerwono.
$$3)\ M_{1B} \bullet \overset{\overline{}}{\psi_{1B}} + \left( M_{2D} + M_{D2} \right) \bullet \overset{\overline{}}{\psi_{2D}} + 6q \bullet 6l \bullet 3l \bullet \overset{\overline{}}{\psi_{1B}} = 0$$
Zakładamy, że kąty są jednostkowe:
$$\overset{\overline{}}{\varphi_{1}} = \overset{\overline{}}{1};\ \ \ \ \ \ \overset{\overline{}}{\varphi_{2}} = \overset{\overline{}}{1};\ \ \ \ \ \ \overset{\overline{}}{\psi} = \overset{\overline{}}{1}$$
1)−(M1A+M1B+M1C+M12) = 0 /•(−1) ⇒ M1A + M1B + M1C + M12 = 0
2) − (M21+M2D−5ql2) = 0 /•(−1) ⇒ M21 + M2D − 5ql2 = 0
3) M1B + M2D + MD2 + 6q • 6l • 3l = 0 ⇒ M21 + M2D − 5ql2 = 0
Wzory transformacyjne:
$M_{1B}^{0} = \frac{1}{8} \bullet 6q \bullet \left( 6l \right)^{2} = 27ql^{2}$
$$M_{1C}^{0} = - \frac{3}{16} \bullet \frac{11}{2}\sqrt{2}ql \bullet 6\sqrt{2}l = - \frac{99}{8}ql^{2}$$
$$M_{1B} = \frac{3EJ}{6l} \bullet \left( \varphi_{1} - \psi_{1B} \right) + M_{1B}^{0} = \frac{1}{2} \bullet \frac{\text{EJ}}{l} \bullet \left( \varphi_{1} - \psi \right) + 27ql^{2}$$
$$M_{1C} = \frac{3\sqrt{2}\text{EJ}}{6\sqrt{2}l} \bullet \left( \varphi_{1} - \psi_{1C} \right) + M_{1C}^{0} = \frac{1}{2} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{1} - \frac{99}{8}ql^{2}$$
$$M_{12} = \frac{2EJ}{6l} \bullet \left( 2\varphi_{1} + \varphi_{2} - 3\psi_{12} \right) = \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2\varphi_{1} + \varphi_{2} \right)$$
$$M_{21} = \frac{2EJ}{6l} \bullet \left( 2\varphi_{2} + \varphi_{1} - 3\psi_{12} \right) = \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2\varphi_{2} + \varphi_{1} \right)$$
$$M_{2D} = \frac{2EJ}{6l} \bullet \left( 2\varphi_{2} + \varphi_{D} - 3\psi_{2D} \right) = \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2\varphi_{2} - 3\psi \right)$$
$$M_{D2} = \frac{2EJ}{6l} \bullet \left( 2\varphi_{D} + \varphi_{2} - 3\psi_{2D} \right) = \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( \varphi_{2} - 3\psi \right)$$
$$M_{1A} = \frac{2EJ}{5l} \bullet \left( 2\varphi_{1} + \varphi_{A} - 3\psi_{1A} \right) = \frac{4}{5} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{1}$$
$$M_{A1} = \frac{2EJ}{5l} \bullet \left( 2\varphi_{A} + \varphi_{1} - 3\psi_{1A} \right) = \frac{2}{5} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{1}$$
Momenty MA1 oraz M1A przyjęto jak dla utwierdzeń, ponieważ siły normalne mają pomijalny wpływ na odkształcenia ram.
1) M1A + M1B + M1C + M12 = 0
2) M21 + M2D − 5ql2 = 0
3) M1B + M2D + MD2 + 108ql2 = 0
Podstawienie wartości momentów do równań:
$$1)\ \frac{4}{5} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{1} + \frac{1}{2} \bullet \frac{\text{EJ}}{l} \bullet \left( \varphi_{1} - \psi \right) + 27ql^{2} + \frac{1}{2} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{1} - \frac{99}{8}ql^{2} + \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2\varphi_{1} + \varphi_{2} \right) = 0$$
$$2)\ \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2\varphi_{2} + \varphi_{1} \right) + \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2\varphi_{2} - 3\psi \right) - 5ql^{2} = 0$$
$$3)\ \frac{1}{2} \bullet \frac{\text{EJ}}{l} \bullet \left( \varphi_{1} - \psi \right) + 27ql^{2} + \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2\varphi_{2} - 3\psi \right) + \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( \varphi_{2} - 3\psi \right) + 108ql^{2} = 0$$
$$1)\ \frac{37}{15} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{1} + \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{2} - \frac{1}{2} \bullet \frac{\text{EJ}}{l} \bullet \ \psi + \frac{117}{8}\text{\ q}l^{2} = 0$$
$$2)\ \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{1} + \frac{4}{3} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{2} - \frac{\text{EJ}}{l} \bullet \ \psi - 5ql^{2} = 0$$
$$3)\ \ \frac{1}{2} \bullet \frac{\text{EJ}}{l} \bullet \varphi_{1} + \frac{\text{EJ}}{l} \bullet \varphi_{2} - \frac{5}{2} \bullet \frac{\text{EJ}}{l} \bullet \ \psi + 135ql^{2} = 0$$
Poniższa macierz musi być symetryczna:
$$\begin{bmatrix}
\frac{37}{15} & \frac{1}{3} & - \frac{1}{2} \\
\frac{1}{3} & \frac{4}{3} & - 1 \\
\frac{1}{2} & 1 & - \frac{5}{2} \\
\end{bmatrix}\begin{bmatrix}
\varphi_{1} \\
\varphi_{2} \\
\psi \\
\end{bmatrix} + \begin{bmatrix}
\frac{117}{8} \\
- 5 \\
135 \\
\end{bmatrix} \bullet \frac{ql^{3}}{\text{EJ}} = 0$$
Mnożymy dolne wartości przez (-1):
$$\begin{bmatrix}
\frac{37}{15} & \frac{1}{3} & - \frac{1}{2} \\
\frac{1}{3} & \frac{4}{3} & - 1 \\
- \frac{1}{2} & - 1 & \frac{5}{2} \\
\end{bmatrix}\begin{bmatrix}
\varphi_{1} \\
\varphi_{2} \\
\psi \\
\end{bmatrix} + \begin{bmatrix}
\frac{117}{8} \\
- 5 \\
- 135 \\
\end{bmatrix} \bullet \frac{ql^{3}}{\text{EJ}} = 0$$
$$\varphi_{1} = 1,681\frac{ql^{3}}{\text{EJ}};\ \ \ \ \ \varphi_{2} = 62,974\frac{ql^{3}}{\text{EJ}};\ \ \ \ \ \psi = 79,526\frac{ql^{3}}{\text{EJ}}$$
Podstawienie wartości kątów do wzorów na momenty:
$$M_{1B} = \frac{1}{2} \bullet \frac{\text{EJ}}{l} \bullet \left( 1,681\frac{ql^{3}}{\text{EJ}} - 79,526\frac{ql^{3}}{\text{EJ}} \right) + 27ql^{2} = - 11,923\ ql^{2}$$
$$M_{1C} = \frac{1}{2} \bullet \frac{\text{EJ}}{l} \bullet 1,681\frac{ql^{3}}{\text{EJ}} - \frac{99}{8}ql^{2} = - 11,535ql^{2}$$
$$M_{12} = \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2 \bullet 1,681\frac{ql^{3}}{\text{EJ}} + 62,974\frac{ql^{3}}{\text{EJ}} \right) = 22,112ql^{2}$$
$$M_{21} = \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2 \bullet 62,974\frac{ql^{3}}{\text{EJ}} + 1,681\frac{ql^{3}}{\text{EJ}} \right) = 42,543ql^{2}$$
$$M_{2D} = \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 2 \bullet 62,974\frac{ql^{3}}{\text{EJ}} - 3 \bullet 79,526\frac{ql^{3}}{\text{EJ}} \right) = - 37,543ql^{2}$$
$$M_{D2} = \frac{1}{3} \bullet \frac{\text{EJ}}{l} \bullet \left( 62,974\frac{ql^{3}}{\text{EJ}} - 3 \bullet 79,526\frac{ql^{3}}{\text{EJ}} \right) = - 58,535ql^{2}$$
$$M_{1A} = \frac{4}{5} \bullet \frac{\text{EJ}}{l} \bullet 1,681\frac{ql^{3}}{\text{EJ}} = 1,345ql^{2}$$
$$M_{A1} = \frac{2}{5} \bullet \frac{\text{EJ}}{l} \bullet 1,681\frac{ql^{3}}{\text{EJ}} = 0,672ql^{2}$$
Siły tnące:
|
|
---|---|
|
|
|
Siły normalne:
|