∫1 = x |y = a(x − p)2+q
$$\int_{}^{}{x^{n} = \frac{x^{n + 1}}{n + 1}\text{\ \ \ \ \ \ }\mathbf{|p =}\frac{\mathbf{- b}}{\mathbf{2}\mathbf{a}}}\ ,\ \mathbf{q = -}\frac{\mathbf{\hat{}}}{\mathbf{4}\mathbf{a}}$$
∫X−1 = ln|x| |x=logaax,x = lnex
$$\int_{}^{}{a^{x} = \frac{a^{x}}{\text{lna}}}\text{\ \ \ \ \ \ \ \ \ \ }\mathbf{\ t = tg}\frac{\mathbf{x}}{\mathbf{2}}\ ,\ \mathbf{sinx =}\frac{\mathbf{2}\mathbf{t}}{\mathbf{1 +}\mathbf{t}^{\mathbf{2}}}$$
$$\int_{}^{}{e^{x} = e^{x}}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ }\mathbf{cossx =}\frac{\mathbf{1 -}\mathbf{t}^{\mathbf{2}}}{\mathbf{1 +}\mathbf{t}^{\mathbf{2}}}$$
$$\int_{}^{}\text{sinax} = - \frac{1}{a}\text{cosx}$$
$$\int_{}^{}{\sin^{2}\text{ax}} = - \frac{1}{2a}(ax - sinaxcosax)$$
$$\int_{}^{}\text{cosax} = \frac{1}{a}\text{sinx}$$
$$\int_{}^{}{\cos^{2}\text{ax}} = \frac{1}{2a}(ax - sinaxcosax)$$
∫xsinx = −xcosx + sinx
$$\int_{}^{}{\frac{1}{\text{sinax}} = \frac{1}{a}ln|tg\frac{\text{ax}}{2}|}$$
$$\int_{}^{}{\frac{1}{\sin^{2}\text{ax}} = - \frac{1}{a}\text{ctgax}}$$
$$\int_{}^{}{\frac{1}{\text{cosax}} = \frac{1}{a}ln|tg\frac{\text{ax}}{2} + \frac{\pi}{4}|}$$
$$\int_{}^{}{\frac{1}{\cos^{2}\text{ax}} = \frac{1}{a}\text{tgax}}$$
|