wzory ściąga


dx = x + c


$$\int_{}^{}{x^{n}\ dx = \frac{x^{n + 1}}{n + 1}} + c$$


$$\int_{}^{}{\frac{1}{x}\ dx = \ln\left| x \right|} + c$$


$$\int_{}^{}{a^{x}\ dx = \frac{a^{x}}{\ln a}} + c$$


ex dx = ex + c


$$\int_{}^{}{e^{\text{ax}}\ dx =}\frac{1}{a}e^{\text{ax}} + c$$


sinax dx = -cosax + c


cosax dx = sinax + c


tgx dx = −ln|cosx| + c


ctgx dx=ln|sinx| + c


$$\int_{}^{}{\frac{\text{dx}}{\operatorname{}x}\ = \operatorname{-ctg}x} + c$$


$$\int_{}^{}{\frac{\text{dx}}{\operatorname{}x}\ = \operatorname{tg}x} + c$$


$$\int_{}^{}{\frac{\text{dx}}{x^{2} + a^{2}} =}\frac{1}{a}\operatorname{arc\ tg}\frac{x}{a} + c$$


$$\int_{}^{}{\frac{\text{dx}}{x^{2} - a^{2}} =}\frac{1}{2a}\ln\left| \left. \ \frac{x - a}{x + a} \right| \right.\ + c$$


$$\int_{}^{}{\frac{\text{dx}}{\sqrt{a^{2} - x^{2}}} =}\operatorname{arc\ sin}\frac{x}{a} + c$$


$$\int_{}^{}{\frac{\text{dx}}{\sqrt{x^{2} + q}} =}\ln\left| x + \right.\ \left. \ \sqrt{x^{2} + q} \right| + c$$

[f(x)+g(x)]dx=f(x)dx+g(x)dx

[f(x)-g(x)]dx=f(x)dx-g(x)dx


af(x)dx = af(x)dx


cos2x = cos2x − sin2x


(a + b)2 = a2 + 2ab + b2


(a − b)2 = a2 − 2ab + b2

  1. (C)’ = 0

  2. (xn)′ = nxn − 1

  3. (x)’ = 1

  4. ($\frac{a}{x})' = \ - \ \frac{a}{x^{2}}$

  5. ($\sqrt{x)}$’ = $\frac{1}{2\sqrt{x}}$

  6. (ax) =  axlna

  7. (ex)′ =  ex

  8. $\left( \log_{a}x \right)^{'} = \ \frac{1}{\text{xlna}}$

  9. $\left( \text{lnx} \right)^{'} = \ \frac{1}{x}$

  10. (sinx) = cosx

  11. (cosx)’ = -sinx

  12. (tgx)’ = $\frac{1}{\cos^{2}x}$

  13. (ctgx)’ = - $\frac{1}{{- \sin}^{2}x}$

  14. (arcsinx)’ = $\frac{1}{\sqrt{1 - x^{2}}}$

  15. (arccos)’ = -$\frac{1}{\sqrt{1 - x^{2}}}$

  16. (arctgx)’ = $\frac{1}{x^{2} + 1}$

  17. (arcctgx)’ = - $\frac{1}{x^{2} + 1}$

[F(x)*g(x)]’=f’(x)g(x)+f(x)g’(x)


$$(\sqrt{})' = \frac{1}{2\sqrt{}}*^{2}$$

(2) = 2 * *


dx = x + c


$$\int_{}^{}{x^{n}\ dx = \frac{x^{n + 1}}{n + 1}} + c$$


$$\int_{}^{}{\frac{1}{x}\ dx = \ln\left| x \right|} + c$$


$$\int_{}^{}{a^{x}\ dx = \frac{a^{x}}{\ln a}} + c$$


ex dx = ex + c


$$\int_{}^{}{e^{\text{ax}}\ dx =}\frac{1}{a}e^{\text{ax}} + c$$


sinax dx = -cosax + c


cosax dx = sinax + c


tgx dx = −ln|cosx| + c


ctgx dx=ln|sinx| + c


$$\int_{}^{}{\frac{\text{dx}}{\operatorname{}x}\ = \operatorname{-ctg}x} + c$$


$$\int_{}^{}{\frac{\text{dx}}{\operatorname{}x}\ = \operatorname{tg}x} + c$$


$$\int_{}^{}{\frac{\text{dx}}{x^{2} + a^{2}} =}\frac{1}{a}\operatorname{arc\ tg}\frac{x}{a} + c$$


$$\int_{}^{}{\frac{\text{dx}}{x^{2} - a^{2}} =}\frac{1}{2a}\ln\left| \left. \ \frac{x - a}{x + a} \right| \right.\ + c$$


$$\int_{}^{}{\frac{\text{dx}}{\sqrt{a^{2} - x^{2}}} =}\operatorname{arc\ sin}\frac{x}{a} + c$$


$$\int_{}^{}{\frac{\text{dx}}{\sqrt{x^{2} + q}} =}\ln\left| x + \right.\ \left. \ \sqrt{x^{2} + q} \right| + c$$

[f(x)+g(x)]dx=f(x)dx+g(x)dx

[f(x)-g(x)]dx=f(x)dx-g(x)dx


af(x)dx = af(x)dx


cos2x = cos2x − sin2x


(a + b)2 = a2 + 2ab + b2


(a − b)2 = a2 − 2ab + b2

  1. (C)’ = 0

  2. (xn)′ = nxn − 1

  3. (x)’ = 1

  4. ($\frac{a}{x})' = \ - \ \frac{a}{x^{2}}$

  5. ($\sqrt{x)}$’ = $\frac{1}{2\sqrt{x}}$

  6. (ax) =  axlna

  7. (ex)′ =  ex

  8. $\left( \log_{a}x \right)^{'} = \ \frac{1}{\text{xlna}}$

  9. $\left( \text{lnx} \right)^{'} = \ \frac{1}{x}$

  10. (sinx) = cosx

  11. (cosx)’ = -sinx

  12. (tgx)’ = $\frac{1}{\cos^{2}x}$

  13. (ctgx)’ = - $\frac{1}{{- \sin}^{2}x}$

  14. (arcsinx)’ = $\frac{1}{\sqrt{1 - x^{2}}}$

  15. (arccos)’ = -$\frac{1}{\sqrt{1 - x^{2}}}$

  16. (arctgx)’ = $\frac{1}{x^{2} + 1}$

  17. (arcctgx)’ = - $\frac{1}{x^{2} + 1}$

[F(x)*g(x)]’=f’(x)g(x)+f(x)g’(x)


$$(\sqrt{})' = \frac{1}{2\sqrt{}}*^{2}$$

(2) = 2 * *


dx = x + c


$$\int_{}^{}{x^{n}\ dx = \frac{x^{n + 1}}{n + 1}} + c$$


$$\int_{}^{}{\frac{1}{x}\ dx = \ln\left| x \right|} + c$$


$$\int_{}^{}{a^{x}\ dx = \frac{a^{x}}{\ln a}} + c$$


ex dx = ex + c


$$\int_{}^{}{e^{\text{ax}}\ dx =}\frac{1}{a}e^{\text{ax}} + c$$


sinax dx = -cosax + c


cosax dx = sinax + c


tgx dx = −ln|cosx| + c


ctgx dx=ln|sinx| + c


$$\int_{}^{}{\frac{\text{dx}}{\operatorname{}x}\ = \operatorname{-ctg}x} + c$$


$$\int_{}^{}{\frac{\text{dx}}{\operatorname{}x}\ = \operatorname{tg}x} + c$$


$$\int_{}^{}{\frac{\text{dx}}{x^{2} + a^{2}} =}\frac{1}{a}\operatorname{arc\ tg}\frac{x}{a} + c$$


$$\int_{}^{}{\frac{\text{dx}}{x^{2} - a^{2}} =}\frac{1}{2a}\ln\left| \left. \ \frac{x - a}{x + a} \right| \right.\ + c$$


$$\int_{}^{}{\frac{\text{dx}}{\sqrt{a^{2} - x^{2}}} =}\operatorname{arc\ sin}\frac{x}{a} + c$$


$$\int_{}^{}{\frac{\text{dx}}{\sqrt{x^{2} + q}} =}\ln\left| x + \right.\ \left. \ \sqrt{x^{2} + q} \right| + c$$

[f(x)+g(x)]dx=f(x)dx+g(x)dx

[f(x)-g(x)]dx=f(x)dx-g(x)dx


af(x)dx = af(x)dx


cos2x = cos2x − sin2x


(a + b)2 = a2 + 2ab + b2


(a − b)2 = a2 − 2ab + b2

  1. (C)’ = 0

  2. (xn)′ = nxn − 1

  3. (x)’ = 1

  4. ($\frac{a}{x})' = \ - \ \frac{a}{x^{2}}$

  5. ($\sqrt{x)}$’ = $\frac{1}{2\sqrt{x}}$

  6. (ax) =  axlna

  7. (ex)′ =  ex

  8. $\left( \log_{a}x \right)^{'} = \ \frac{1}{\text{xlna}}$

  9. $\left( \text{lnx} \right)^{'} = \ \frac{1}{x}$

  10. (sinx) = cosx

  11. (cosx)’ = -sinx

  12. (tgx)’ = $\frac{1}{\cos^{2}x}$

  13. (ctgx)’ = - $\frac{1}{{- \sin}^{2}x}$

  14. (arcsinx)’ = $\frac{1}{\sqrt{1 - x^{2}}}$

  15. (arccos)’ = -$\frac{1}{\sqrt{1 - x^{2}}}$

  16. (arctgx)’ = $\frac{1}{x^{2} + 1}$

  17. (arcctgx)’ = - $\frac{1}{x^{2} + 1}$

[F(x)*g(x)]’=f’(x)g(x)+f(x)g’(x)


$$(\sqrt{})' = \frac{1}{2\sqrt{}}*^{2}$$

(2) = 2 * *


dx = x + c


$$\int_{}^{}{x^{n}\ dx = \frac{x^{n + 1}}{n + 1}} + c$$


$$\int_{}^{}{\frac{1}{x}\ dx = \ln\left| x \right|} + c$$


$$\int_{}^{}{a^{x}\ dx = \frac{a^{x}}{\ln a}} + c$$


ex dx = ex + c


$$\int_{}^{}{e^{\text{ax}}\ dx =}\frac{1}{a}e^{\text{ax}} + c$$


sinax dx = -cosax + c


cosax dx = sinax + c


tgx dx = −ln|cosx| + c


ctgx dx=ln|sinx| + c


$$\int_{}^{}{\frac{\text{dx}}{\operatorname{}x}\ = \operatorname{-ctg}x} + c$$


$$\int_{}^{}{\frac{\text{dx}}{\operatorname{}x}\ = \operatorname{tg}x} + c$$


$$\int_{}^{}{\frac{\text{dx}}{x^{2} + a^{2}} =}\frac{1}{a}\operatorname{arc\ tg}\frac{x}{a} + c$$


$$\int_{}^{}{\frac{\text{dx}}{x^{2} - a^{2}} =}\frac{1}{2a}\ln\left| \left. \ \frac{x - a}{x + a} \right| \right.\ + c$$


$$\int_{}^{}{\frac{\text{dx}}{\sqrt{a^{2} - x^{2}}} =}\operatorname{arc\ sin}\frac{x}{a} + c$$


$$\int_{}^{}{\frac{\text{dx}}{\sqrt{x^{2} + q}} =}\ln\left| x + \right.\ \left. \ \sqrt{x^{2} + q} \right| + c$$

[f(x)+g(x)]dx=f(x)dx+g(x)dx

[f(x)-g(x)]dx=f(x)dx-g(x)dx


af(x)dx = af(x)dx


cos2x = cos2x − sin2x


(a + b)2 = a2 + 2ab + b2


(a − b)2 = a2 − 2ab + b2

  1. (C)’ = 0

  2. (xn)′ = nxn − 1

  3. (x)’ = 1

  4. ($\frac{a}{x})' = \ - \ \frac{a}{x^{2}}$

  5. ($\sqrt{x)}$’ = $\frac{1}{2\sqrt{x}}$

  6. (ax) =  axlna

  7. (ex)′ =  ex

  8. $\left( \log_{a}x \right)^{'} = \ \frac{1}{\text{xlna}}$

  9. $\left( \text{lnx} \right)^{'} = \ \frac{1}{x}$

  10. (sinx) = cosx

  11. (cosx)’ = -sinx

  12. (tgx)’ = $\frac{1}{\cos^{2}x}$

  13. (ctgx)’ = - $\frac{1}{{- \sin}^{2}x}$

  14. (arcsinx)’ = $\frac{1}{\sqrt{1 - x^{2}}}$

  15. (arccos)’ = -$\frac{1}{\sqrt{1 - x^{2}}}$

  16. (arctgx)’ = $\frac{1}{x^{2} + 1}$

  17. (arcctgx)’ = - $\frac{1}{x^{2} + 1}$

[F(x)*g(x)]’=f’(x)g(x)+f(x)g’(x)


$$(\sqrt{})' = \frac{1}{2\sqrt{}}*^{2}$$

(2) = 2 * *


dx = x + c


$$\int_{}^{}{x^{n}\ dx = \frac{x^{n + 1}}{n + 1}} + c$$


$$\int_{}^{}{\frac{1}{x}\ dx = \ln\left| x \right|} + c$$


$$\int_{}^{}{a^{x}\ dx = \frac{a^{x}}{\ln a}} + c$$


ex dx = ex + c


$$\int_{}^{}{e^{\text{ax}}\ dx =}\frac{1}{a}e^{\text{ax}} + c$$


sinax dx = -cosax + c


cosax dx = sinax + c


tgx dx = −ln|cosx| + c


ctgx dx=ln|sinx| + c


$$\int_{}^{}{\frac{\text{dx}}{\operatorname{}x}\ = \operatorname{-ctg}x} + c$$


$$\int_{}^{}{\frac{\text{dx}}{\operatorname{}x}\ = \operatorname{tg}x} + c$$


$$\int_{}^{}{\frac{\text{dx}}{x^{2} + a^{2}} =}\frac{1}{a}\operatorname{arc\ tg}\frac{x}{a} + c$$


$$\int_{}^{}{\frac{\text{dx}}{x^{2} - a^{2}} =}\frac{1}{2a}\ln\left| \left. \ \frac{x - a}{x + a} \right| \right.\ + c$$


$$\int_{}^{}{\frac{\text{dx}}{\sqrt{a^{2} - x^{2}}} =}\operatorname{arc\ sin}\frac{x}{a} + c$$


$$\int_{}^{}{\frac{\text{dx}}{\sqrt{x^{2} + q}} =}\ln\left| x + \right.\ \left. \ \sqrt{x^{2} + q} \right| + c$$

[f(x)+g(x)]dx=f(x)dx+g(x)dx

[f(x)-g(x)]dx=f(x)dx-g(x)dx


af(x)dx = af(x)dx


cos2x = cos2x − sin2x


(a + b)2 = a2 + 2ab + b2


(a − b)2 = a2 − 2ab + b2

  1. (C)’ = 0

  2. (xn)′ = nxn − 1

  3. (x)’ = 1

  4. ($\frac{a}{x})' = \ - \ \frac{a}{x^{2}}$

  5. ($\sqrt{x)}$’ = $\frac{1}{2\sqrt{x}}$

  6. (ax) =  axlna

  7. (ex)′ =  ex

  8. $\left( \log_{a}x \right)^{'} = \ \frac{1}{\text{xlna}}$

  9. $\left( \text{lnx} \right)^{'} = \ \frac{1}{x}$

  10. (sinx) = cosx

  11. (cosx)’ = -sinx

  12. (tgx)’ = $\frac{1}{\cos^{2}x}$

  13. (ctgx)’ = - $\frac{1}{{- \sin}^{2}x}$

  14. (arcsinx)’ = $\frac{1}{\sqrt{1 - x^{2}}}$

  15. (arccos)’ = -$\frac{1}{\sqrt{1 - x^{2}}}$

  16. (arctgx)’ = $\frac{1}{x^{2} + 1}$

  17. (arcctgx)’ = - $\frac{1}{x^{2} + 1}$

[F(x)*g(x)]’=f’(x)g(x)+f(x)g’(x)


$$(\sqrt{})' = \frac{1}{2\sqrt{}}*^{2}$$

(2) = 2 * *


Wyszukiwarka

Podobne podstrony:
Wzory ściąga (7)
wzory -sciaga, PG inżynierka, Semestr 3, Podstawy siłowni okrętowej
Matematyka studia WZORY ściąga
wzory-ŚCIĄGA, Matematyka
wzory ściąga
fiza wzory sciaga
analiza wzory sciaga
wzory I - ściągawka, MATEMATYKA(1), Matematyka(1)
wzory -sciaga, PG inżynierka, Semestr 3, Podstawy siłowni okrętowej
Wzory ściąga
Wzory - ściąga
Wzory- ściąga, Studia, 1-stopień, inżynierka, Ochrona Środowiska, Statystyka, Statystyka
Mechanika Płynów Wzory Ściąga, Temperatura - jest miarą średniej energii kinetycznej atomów lub mole
GLOWNE AMINOKWASY WZORY SCIAGA
Wzory ściąga (2)
Log wzory ściąga
WZORY ściąga
Statyst wzory ściaga
statystyka ściąga wzory

więcej podobnych podstron