Śr.A SS ẍ=⅟n * ∑ni=1 xi
Śr.A SPk ẍ=⅟n * ∑ni=1 xi ni
Śr.A SP ẍ= ẍ=⅟n * ∑ni=1 x^ ni
Śr.H SS ẍ= n/ ∑ ⅟xi
Śr.G SS ẍG= n√x1*x2*…*xn
War.SS S2(x)= ⅟n ∑ (xi- ẍ)2
War.SPk S2(x)= ⅟n ∑ (xi- ẍ)2ni
War. SP S2(x)= ⅟n ∑ (xi^ - ẍ)2ni
O.stand. s(x)= √s2(x)
O.przec. SS d(x)= ⅟n * ∑ni=1 |xi - ẍ|
Wsp.Zm. V(x)=s(x)/ ẍ *100%
Typ.ob.zm. ẍ-s(x)<xtyp< ẍ+s(x)
Wsp.Zm.poz. VQ =Q/Me *100%
Typ.Ob.zm. Me-Q<xtyp<Me+Q
Ws.Pearsona As= ẍ-D/s(x)
D. D=xD+ nD-nD-1/( nD-nD-1)+( nD-nD+1) ∆xD
Gdy przed.klas mają równe długości
D D=xD+ gD – gD-1 / (gD – gD-1)+( gD – gD+1) ∆xD
Wsp.As.poz
AQ= (Q3-Q2)-(Q2-Q1)/ (Q3-Q2)+(Q2-Q1)
Kwantyl rzędu β
Q β= xD+ βn- cumi=1 / nQ β *∆xQ β
3mom.cent. SS
M3(x)= ⅟n ∑ (xi- ẍ)3
3mom.cent.SPk
M3(x)= ⅟n ∑ (xi- ẍ)3ni
3mom.cent. SP
M3(x)= ⅟n ∑ (xi^ - ẍ)3ni
3mom.cent. zestandaryzowany
Y3= M3(x)/ s3(x)
$$r = \ \frac{\sum_{i = 1}^{n}{\left( x_{\text{i\ }} - \overset{\overline{}}{x}\ \right)(}y_{i} - \overset{\overline{}}{y}\ )}{\sqrt{\sum_{i = 1}^{n}{\left( x_{i} - \ \overset{\overline{}}{x}\ \right)\ }}{\sum_{i = n}^{n}{(y_{i} - \ \overset{\overline{}}{y}\ )}}^{2}}$$
$$a_{1\ } = \ \frac{\sum_{i = 1}^{n}\left( x_{i} - \ \overset{\overline{}}{x}\ \right)\ (y_{i} - \overset{\overline{}}{y}\ )}{\sum_{i = 1}^{n}{\left( x_{i} - \ \overset{\overline{}}{x}\ \right)\ }}$$
$$a_{1} = \ \overset{\overline{}}{y} - \ a_{1}\ \overset{\overline{}}{x}$$
φ = r2 × 100%
$$\hat{y_{i}} = \ a_{1}x_{i} + \ a_{0}$$