$R_{L} = \frac{R_{0} \bullet l}{n}$ $b_{sr} = \sqrt[3]{b_{1} \bullet b_{2} \bullet b_{3}}$ $r_{z} = \sqrt[n]{r \bullet a^{n - 1}}$ $L_{0} = \left( 4,6\log{\frac{b_{sr}}{r_{z}} + \frac{0,5}{n}} \right) \bullet 10^{- 4}$ $C_{0} = \frac{0,02415}{\ln\frac{b_{sr}}{r_{z}}} \bullet 10^{- 6}$ XL = ωL0l BL = ωC0l $U_{f_{\text{kr}}} = 48,9\text{ma} \bullet \text{mp} \bullet \delta \bullet r_{z} \bullet \ln\frac{b_{sr}}{r_{z}}$ ${P}_{0} = 0,18 \bullet \sqrt{\frac{r_{z}}{b_{sr}}}\left( U_{f} - U_{f_{\text{kr}}} \right)^{2}\ U_{f} > U_{f_{\text{kr}}}$ $G_{L} = \frac{3P_{0} \bullet 10^{- 3}}{U^{2}} \bullet l$ $U_{f} = \frac{400}{\sqrt{3}}$ $Z_{T} = \frac{U_{Z\%}}{100} \bullet \frac{U^{2}}{S_{N}}$ $R_{T} = \frac{P_{\text{Cu}\%}}{100} \bullet \frac{U^{2}}{S_{N}}$ $X_{T} = \sqrt{{Z_{T}}^{2} - {R_{T}}^{2}}\text{\ \ \ }$ $G_{T} = \frac{P_{\text{Fe}\%}}{100} \bullet \frac{S_{N}}{U^{2}}$ $Y_{T} = \frac{I_{0\%}}{100} \bullet \frac{S_{N}}{U^{2}}$ $B_{T} = \sqrt{{Y_{T}}^{2} - {G_{T}}^{2}}$ $X_{S} = \frac{1,1 \bullet U^{2}}{\sqrt{3} \bullet {S"}_{R}}$ $I_{1} = \frac{P}{\text{cosφ} \bullet U \bullet \sqrt{3}}\left( \text{cosφ} \pm \text{jsinφ} \right)$ ${U}_{\text{BA}} = \sqrt{3} \bullet I_{\text{BA}} \bullet Z_{\text{AB}}$ $I_{A} = U_{\text{fAB}} \bullet \frac{B_{L1}}{2}$ $U^{'} = \frac{\text{PR} + \text{XQ}}{U}$ $U" = \frac{\text{PX} - \text{QR}}{U}$ $P = \frac{P^{2} + Q^{2}}{U}R$ $Q = \frac{P^{2} + Q^{2}}{U}X$ $S_{1} = \frac{P_{A}}{\text{cosφ}}\text{\ \ \ }Q_{A} = \left( \frac{U_{f}}{\sqrt{2}} \right)^{2} \bullet 3\frac{B_{L2}}{2}$ ${I"}_{k} = \frac{\text{mcU}}{\sqrt{3} \bullet \left( Z_{1} + Z \right)}$ $U = \sqrt{3} \bullet R_{0}\sum_{\begin{matrix} i = 1 \\ j = 2 \\ \end{matrix}}^{}{I_{\text{ij}}l_{\text{ij}}}$ $U_{\text{AD}} = \sqrt{3}R_{0}\left( {I_{B}}^{*} \bullet l_{\text{AB}} + {I_{C}}^{*} \bullet l_{\text{AC}} + {I_{D}}^{*} \bullet l_{\text{AD}} \right)$ $I_{A1} = \frac{I_{B}l_{\text{BA}2} + I_{C}l_{\text{CA}2} + I_{D}l_{\text{DA}2}}{l_{A1A2}} + \frac{U_{A1} - U_{A2}}{\sqrt{3}l_{A1A2} \bullet Z_{0}}$ IA2 = IB + IC + ID − IA1 $I_{\text{th}} = {I"}_{k}\sqrt{m + n}$ $i_{p} = \sqrt{2} \bullet \mathcal{H} \bullet {I"}_{k}$
|
$R_{L} = \frac{R_{0} \bullet l}{n}$ $b_{sr} = \sqrt[3]{b_{1} \bullet b_{2} \bullet b_{3}}$ $r_{z} = \sqrt[n]{r \bullet a^{n - 1}}$ $L_{0} = \left( 4,6\log{\frac{b_{sr}}{r_{z}} + \frac{0,5}{n}} \right) \bullet 10^{- 4}$ $C_{0} = \frac{0,02415}{\ln\frac{b_{sr}}{r_{z}}} \bullet 10^{- 6}$ XL = ωL0l BL = ωC0l $U_{f_{\text{kr}}} = 48,9\text{ma} \bullet \text{mp} \bullet \delta \bullet r_{z} \bullet \ln\frac{b_{sr}}{r_{z}}$ ${P}_{0} = 0,18 \bullet \sqrt{\frac{r_{z}}{b_{sr}}}\left( U_{f} - U_{f_{\text{kr}}} \right)^{2}\ U_{f} > U_{f_{\text{kr}}}$ $G_{L} = \frac{3P_{0} \bullet 10^{- 3}}{U^{2}} \bullet l$ $U_{f} = \frac{400}{\sqrt{3}}$ $Z_{T} = \frac{U_{Z\%}}{100} \bullet \frac{U^{2}}{S_{N}}$ $R_{T} = \frac{P_{\text{Cu}\%}}{100} \bullet \frac{U^{2}}{S_{N}}$ $X_{T} = \sqrt{{Z_{T}}^{2} - {R_{T}}^{2}}\text{\ \ \ }$ $G_{T} = \frac{P_{\text{Fe}\%}}{100} \bullet \frac{S_{N}}{U^{2}}$ $Y_{T} = \frac{I_{0\%}}{100} \bullet \frac{S_{N}}{U^{2}}$ $B_{T} = \sqrt{{Y_{T}}^{2} - {G_{T}}^{2}}$ $X_{S} = \frac{1,1 \bullet U^{2}}{\sqrt{3} \bullet {S"}_{R}}$ $I_{1} = \frac{P}{\text{cosφ} \bullet U \bullet \sqrt{3}}\left( \text{cosφ} \pm \text{jsinφ} \right)$ ${U}_{\text{BA}} = \sqrt{3} \bullet I_{\text{BA}} \bullet Z_{\text{AB}}$ $I_{A} = U_{\text{fAB}} \bullet \frac{B_{L1}}{2}$ $U^{'} = \frac{\text{PR} + \text{XQ}}{U}$ $U" = \frac{\text{PX} - \text{QR}}{U}$ $P = \frac{P^{2} + Q^{2}}{U}R$ $Q = \frac{P^{2} + Q^{2}}{U}X$ $S_{1} = \frac{P_{A}}{\text{cosφ}}\text{\ \ \ }Q_{A} = \left( \frac{U_{f}}{\sqrt{2}} \right)^{2} \bullet 3\frac{B_{L2}}{2}$ ${I"}_{k} = \frac{\text{mcU}}{\sqrt{3} \bullet \left( Z_{1} + Z \right)}$ $U = \sqrt{3} \bullet R_{0}\sum_{\begin{matrix} i = 1 \\ j = 2 \\ \end{matrix}}^{}{I_{\text{ij}}l_{\text{ij}}}$ $U_{\text{AD}} = \sqrt{3}R_{0}\left( {I_{B}}^{*} \bullet l_{\text{AB}} + {I_{C}}^{*} \bullet l_{\text{AC}} + {I_{D}}^{*} \bullet l_{\text{AD}} \right)$ $I_{A1} = \frac{I_{B}l_{\text{BA}2} + I_{C}l_{\text{CA}2} + I_{D}l_{\text{DA}2}}{l_{A1A2}} + \frac{U_{A1} - U_{A2}}{\sqrt{3}l_{A1A2} \bullet Z_{0}}$ IA2 = IB + IC + ID − IA1 $I_{\text{th}} = {I"}_{k}\sqrt{m + n}$ $i_{p} = \sqrt{2} \bullet \mathcal{H} \bullet {I"}_{k}$
|
---|