Częściej używanej wzory całek nieoznaczonych:
$\int_{}^{}{x^{n}dx = \frac{x^{n + 1}}{n + 1} + C}$
$\int_{}^{}{a^{x}dx = \frac{a^{x}}{\text{lna}} + C}$
$\int_{}^{}{\frac{\text{dx}}{x} = \ln\left| x \right| + C}$
∫cosx dx =   − sinx + C
∫sinx dx = cosx + C
$\int_{}^{}{\text{sin\ }\left( ax + b \right)dx = - \frac{1}{a}\cos\left( ax + b \right) + C}$
$\int_{}^{}{\text{cos\ }\left( ax + b \right)dx = \frac{1}{a}\sin\left( ax + b \right) + C}$
$\int_{}^{}{\frac{\text{dx}}{\cos^{2}x} = tgx + C}$
$\int_{}^{}{\frac{\text{dx}}{\sin^{2}x} = - ctgx + C}$
$\int_{}^{}{\frac{\text{dx}}{\sqrt{1 - x^{2}}} = arcsinx + C = - arccosx + C}$
$\int_{}^{}{\frac{\text{dx}}{1 + x^{2}} = arctgx + C = \ - arcctgx + C}$
$\int_{}^{}{\frac{\text{dx}}{\sqrt{a^{2} - x^{2}})} = arcsin\frac{x}{|a|} + C}$
$\int_{}^{}{\frac{\text{dx}}{{(x - k)}^{2} + b} = \ \frac{1}{\sqrt{b}}\text{arctg}\frac{x - k}{\sqrt{b}}} + C$
$\int_{}^{}{\frac{\text{dx}}{x^{2}} = - \frac{1}{x} + C}$
$\int_{}^{}\frac{\text{dx}}{\sqrt{x}} = 2\sqrt{x} + C$
$\int_{}^{}{\frac{\text{dx}}{\sqrt{1 + x^{2}}} = \ln\left| x + \sqrt{1 + x^{2}} \right| + C}$
$\int_{}^{}{\frac{\text{dx}}{\sqrt{x^{2} - 1}} = ln|x + \sqrt{x^{2} - 1}}| + C$
$\int_{}^{}{e^{ax + b}dx = \frac{1}{a}e^{ax + b} + C}$
$\int_{}^{}\frac{f^{'}\left( x \right)\text{dx}}{f(x)} = \ln{\left| f\left( x \right) \right| + C}$
$\int_{}^{}{\frac{f^{'}\left( x \right)\text{dx}}{\sqrt{f(x)}} = 2\sqrt{f(x)} + C}$