Litery a, b, c będą zastąpione konkretnymi liczbami, do każdej całki nieoznaczonej mogą być dodane granice
∫e4 − xdx
$\int_{}^{}\frac{sin3x + 5x^{14}}{cos3x - x^{15} + ln7}$dx
$\int_{}^{}{\left( \sqrt{x} + \frac{1}{\sqrt[3]{x}} \right)^{2}\text{dx}}$
$\int_{}^{}\frac{ax^{2} + b}{x^{2} + 1}\text{dx}$
∫tgxdx
∫tg2xdx
$\int_{}^{}{\sqrt{x\sqrt{x\sqrt{x}}}\text{dx}}$
$\int_{}^{}2^{x}\sqrt[5]{8^{x}}\text{dx}$
$\int_{}^{}\frac{2\sqrt[3]{x} + 3\sqrt{x^{7}} - 4\sqrt[4]{x^{11}}}{\sqrt[5]{x^{2}}}\text{dx}$
$\int_{}^{}\frac{\text{cosx}}{5sinx + 3}\text{dx}$
$\int_{}^{}\frac{cosx + 2x^{5} - 3}{\sqrt{sin3x + x^{6} - 9x + 34}}\text{dx}$
$\int_{}^{}\frac{e^{5x} - 3cosx + arctgx}{\sqrt{arcsinx + ln3x - 15}}\text{dy}$
$\int_{}^{}\frac{\text{lnx}}{x^{a}}\text{dx}$
$\int_{}^{}{\sqrt[a]{x}\text{lnx}}\text{dx}$
∫xarctgxdx
∫lnxdx
$\int_{}^{}\frac{\ln^{2}\text{xdx}}{x^{2}}$
$\int_{}^{}\frac{\text{tgxdx}}{\text{lncosx}}$
∫(arccosx)2dx
∫eaxcosbxdx
∫xsinaxdx
∫arcctgxdx
∫xln2xdx
∫arcsinxdx
$\int_{}^{}{\frac{x}{\cos^{2}x}\text{dx}}$
$\int_{}^{}\frac{\text{arcosxdx}}{\sqrt{x + 1}}$
∫xln(1−x)dx
∫ln(1+x2)dx
$\int_{}^{}\frac{\left( \text{lnx} \right)^{a}}{x}\text{dx}$
∫(7x+8)35dx
$\int_{}^{}\frac{\text{dx}}{x\sqrt{1 - lnx}}$
$\int_{}^{}\frac{x^{2}\text{dx}}{e^{x^{3}}}$
$\int_{}^{}\frac{3^{x}\text{dx}}{1 + 9^{x}}$
$\int_{}^{}\frac{x^{2}\text{dx}}{\sqrt{1 - x^{6}}}$
∫cosaxesinaxdx
∫xex2 − 5dx
$\int_{}^{}\frac{\text{dx}}{\sin^{2}x + 4\cos^{2}x}$ podstawienie t = tgx
$\int_{}^{}\frac{\text{dx}}{{3sin}^{2}x + 1}$ podstawienie t = tgx
$\int_{}^{}\frac{x^{2}}{\sqrt{1 - x^{2}}}\text{dx}$ podstawienie x = sint
$\int_{}^{}\frac{\sqrt{\left( {1 - x}^{2} \right)^{3}}}{x^{6}}\text{dx}$ podstawienie x = sint
∫tg3xdx
∫xex2 + 5dx
$\int_{}^{}\frac{\left( \text{arctgx} \right)^{a}}{1 + x^{2}}$dx
$\int_{}^{}{\frac{3x}{\left( x - 1 \right)^{2}}\text{dx}}$
$\int_{}^{}{\frac{3x^{2} + x - 2}{\left( x - 1 \right)^{2}\left( x^{2} + 1 \right)}\text{dx}}$
$\int_{}^{}\frac{1}{x^{2} + 2x - 3}$dx
$\int_{}^{}\frac{\text{dx}}{x^{2} + 4x + 13}$
$\int_{}^{}{\frac{31}{x^{3}(x - 1)}\text{dx}}$
$\int_{}^{}\frac{x - 4}{\left( x - 2 \right)\left( x - 3 \right)}$dx
$\int_{}^{}\frac{2x + 7}{x^{2} + x - 2}$dx
$\int_{}^{}\frac{3x^{2} + 2x - 3}{x^{3} - x}$dx
$\int_{}^{}\frac{\text{dx}}{{x - 5x}^{2}}$
$\int_{}^{}\frac{x + 2}{x^{3} - 2x^{2}}$dx
$\int_{}^{}\frac{x^{2} + 2x + 6}{\left( x - 2 \right)\left( x - 1 \right)\left( x - 3 \right)}$dx
$\int_{}^{}\frac{{3x}^{2} + 8}{x^{3} + 4x^{2} + 4x}\text{dx}$
$\int_{}^{}\frac{x^{2} + 1}{x^{3} - 3x^{2} + 3x - 1}\text{dx}$
$\int_{}^{}\frac{x^{2}}{x^{4} + 5x^{2} + 1}\text{dx}$
$\int_{}^{}\frac{(4x - 3)dx}{x^{2} + 8x + 25}$
∫sin4axdx
∫sin3axdx
∫sin5axdx
∫cos2axdx
∫sin4axcos3xdx
∫sinaxsinbxcoscxdx
∫sinaxsinbxdx
∫cosaxsinbxdx
∫cosaxcosbxdx
$\int_{}^{}\frac{\text{dx}}{\text{cosx}}$
$\int_{}^{}\frac{\text{dx}}{a + cosx}$ Podstawienie elementarne t = tg(x/2)
$\int_{}^{}\frac{\text{dx}}{\text{asin}x + bcosx}$ Podstawienie elementarne t = tg(x/2)
$\int_{}^{}\sqrt{1 - a^{2}x^{2}}$dx
$\int_{}^{}\frac{1}{x^{2}\sqrt{4 - x^{2}}}\text{dx}$
$\int_{}^{}\frac{x^{3}}{\sqrt{3 - 4x + x^{2}}}\text{dx}$
$\int_{}^{}\frac{1}{x - \sqrt{x}}\text{dx}$
$\int_{}^{}\frac{1}{\sqrt{x^{2} + 10x - 15}}\text{dx}$
$\int_{}^{}\frac{1}{\sqrt{x^{2} + 6x + 15}}\text{dx}$
$\int_{}^{}\frac{5x - 3}{\sqrt{{2x}^{2} + 8x + 1}}\text{dx}$
$\int_{}^{}\frac{\text{dx}}{\sqrt{1 - 2x} - \sqrt[4]{1 - 2x}}$
$\int_{}^{}\frac{1}{x}\sqrt{\frac{x + 2}{x}}\text{dx}$
$\int_{}^{}{\sqrt{\frac{x + 1}{x - 1}}\text{dx}}$
$\int_{}^{}\frac{1}{x^{2}}\sqrt{\frac{x + 1}{x}}\text{dx}$
$\int_{}^{}{x\sqrt{x + a}\text{dx}}$
$\int_{}^{}{\frac{1 + \sqrt[4]{x}}{x + \sqrt{x}}\text{dx}}$
$\int_{}^{}\frac{\text{dx}}{\left( 1 + \sqrt[3]{x} \right)\sqrt{x}}$
$\int_{}^{}\sqrt{1 + a^{2}x^{2}}$dx
$\int_{0}^{6}{\frac{x}{\sqrt{4 + x^{2}}}\text{dx}}$
$\int_{0}^{2}\frac{e^{\text{ax}}}{1 + e^{\text{bx}}}\text{dx}$
∫01xe−xdx
∫01x
$\int_{ln2}^{ln2}\frac{e^{x} - 1}{e^{x} + 1}\ $= 0 Dlaczego ?
$\int_{- 1}^{1}\frac{2x^{5} - x^{3} + x}{x^{2} + 1}dx = 0$ Dlaczego ?
$\int_{- \infty}^{+ \infty}{\frac{1}{a^{2} + x^{2}}\text{dx}}$
$\int_{0}^{\frac{\pi}{2}}\text{ctgxdx}$
$\int_{0}^{\frac{\pi}{2}}\text{tgaxdx}$
$\int_{- 1}^{2}\frac{\text{dx}}{\sqrt[3]{\left( x - 1 \right)^{2}}}$
$\int_{0}^{2}\frac{x^{3}\text{dx}}{\sqrt{4 - x^{2}}}$ podstawienie x = 2sint
$\int_{1}^{\infty}{\frac{\text{lnx}}{x^{3}}\text{dx}}$
∫−∞0xeaxdx
$\int_{- 2}^{2}\frac{\text{xdx}}{x^{2} - 1}$
∫sinlnx2dx
∫sinlnxdx
$\int_{}^{}{\text{arctg}\sqrt{x}\text{dx}}$
$\int_{}^{}{e^{\sqrt{x}}\text{dx}}$
$\int_{}^{}{e^{\sqrt[3]{x}}\text{dx}}$
$\int_{}^{}{\frac{1}{1 + tgx}\text{dx}}$
$\int_{}^{}\frac{\text{dx}}{\sqrt{x + 5} + \sqrt{x}}$
y = x2 – b i y = ax
y = ax - x2 i y = bx
y = x3 , y = ax
y = - x2 x = y2
y = x2 y = 2x2 y =8