Dane |
Obliczenia |
wyniki |
|
OBLICZENIA CIEPLNO PRZEPŁYWOWE
BILANS CIEPLNY
QA = QB + Qstr
Zakładamy Qstr = 5%
Qstr = 0,05 QA
QA = GA + CpA (twyl A-twl A)
QB = GB + CpB (twyl B-twl B) |
|
twl = 95
twyl = 190
Tabela II-1
rCo2 = 0, 55
rCo = 0, 3
rN2 = 0, 15
Tkr Co2 = 304, 15K
Tkr Co = 132, 95K
Tkr N2 = 126, 05K
|
OBLICZENIE CIEPŁA WŁAŚCIWEGO CZYNNIKA B:
$$T_{\text{rB}} = \frac{T}{T_{k\text{rB}}}$$
$$t_{sr} = \frac{t_{\text{wyl}} + t_{\text{wl}}}{2} = \frac{95 + 190}{2} = 142,5$$
Tsr = 142, 5 + 293 = 415, 5
$$T_{\text{kr}} = \sum_{}^{}{r_{i}*T_{\text{kri}}}$$
Tkr - tabela II-1 wybrane właściwości fizyczne niektórych substancji
Tkr = 0, 55 * 304, 15 + 0, 3 * 132, 95 + 0, 15 * 126, 5 = 226, 08
$$T_{\text{rB}} = \frac{T}{T_{\text{krB}}} = \frac{415,5}{226,08} = 1,84$$
|
tsr = 142, 5
Tsr = 415, 5K
Tkr = 226, 08K
TrB = 1,84 |
P=0,4 MPa
Tabela II-1
Pkr Co2 = 7, 355MPa
Pkr Co = 3, 491MPa
Pkr N2 = 3, 393MPa
|
$$P_{\text{rB}} = \frac{P}{P_{\text{krB}}}$$
$$P_{\text{kr}} = \sum_{}^{}{r_{i}*P_{\text{kri}}}$$
Pkr = 0, 55 * 7, 355 + 0, 3 * 3, 491 + 0, 15 * 3, 396 = 5, 602
$$P_{\text{rB}} = \frac{P}{P_{\text{krB}}} = \frac{0,4}{5,602}0,0714$$
|
Pkr=5,602MPa
PrB = 0, 0714
|
CpCO2, 100 = 40, 206 kJ/(kmol*K)
CpCO2, 200 = 43, 689 kJ/(kmol*K)
CpCO, 100 = 29, 262 kJ/(kmol*K)
CpCO, 200 = 29, 647 kJ/(kmol*K)
CpN2, 100 = 29, 199 kJ/(kmol*K)
CpN2, 200 = 29, 471 kJ/(kmol*K)
rCo2 = 0, 55
rCo = 0, 3
rN2 = 0, 15
MCo2 = 44 kg/kmol
MCo = 28 kg/kmol
MN2 = 28 kg/kmol
|
T= 142,5℃
Cp=$\frac{\text{Cp}_{2} - \text{Cp}_{1}}{T_{2} - T_{2}}*\left( T_{p} - T_{1} \right) + \text{Cp}_{1}$
$$\text{Cp}_{CO2} = \frac{43,689 - 40,206}{200 - 100}*\left( 142,5 - 100 \right) + 40,206 = 41,686$$
$$\text{Cp}_{\text{CO}} = \frac{29,647 - 29,262}{200 - 100}*\left( 142,5 - 100 \right) + 29,262 = 29,426$$
$$\text{Cp}_{N2} = \frac{29,471 - 29,199}{200 - 100}*\left( 142,5 - 100 \right) + 29,199 = 29,315$$
(Cp*)T = $\sum_{}^{}{r_{i}*\text{Cp}_{i}}$
(Cp*)T =0,55*41,686+0,3*29,426+0,15*29,315=36,152
Poprawka ciśnieniowa molowego ciepła właściwego odczytana z wykresu II-8
(Cp,M)T =0,4 J/(mol*K)
(Cp,M)T =(Cp*)T+(Cp,M)T
(Cp,M)T =36,152+0,4=36,552
MMB = $\sum_{}^{}{r_{i}*M}$i
MMB =0,55*44+0,3*28+0,15*28=36,8
Cp=$\frac{{(Cp,}_{M})T}{M\text{MB}} = \frac{36,552}{36,8} = 0,99$
QB = GB + CpB (twyl B-twl B)= 9300*$\frac{1}{3600}*0,99*95 =$242,963 |
CpCO2 = 41, 686
kJ/(kmol*K)
CpCO = 29, 426
kJ/(kmol*K)
CpN2 = 29, 315
kJ/(kmol*K)
(Cp*)T =36,152 kJ/(kmol*K)
(Cp,M)T=36,552 kJ/(kmol*K)
MMB =36,8
kg/kmol
Cp=0,99kJ/kg*K
QB =242,963 kW |
twl = 440
twyl = 310
Tabela II-1
rCo2 = 0, 20
rN2 = 0, 80
Tkr Co2 = 304, 15K
Tkr N2 = 126, 05K
|
OBLICZENIE CIEPŁA WŁAŚCIWEGO CZYNNIKA A:
$$T_{\text{rA}} = \frac{T}{T_{\text{krA}}}$$
$$t_{sr} = \frac{t_{\text{wyl}} + t_{\text{wl}}}{2} = \frac{440 + 310}{2} = 375$$
Tsr = 375 + 293 = 648
$$T_{\text{kr}} = \sum_{}^{}{r_{i}*T_{\text{kri}}}$$
Tkr - tabela II-1 wybrane właściwości fizyczne niektórych substancji
Tkr = 0, 2 * 304, 15 + 0, 8 * 126, 5 = 162, 03
$$T_{\text{rA}} = \frac{T}{T_{\text{krA}}} = \frac{648}{162,03} = 3,99$$
|
tsr = 375
Tsr = 648K
Tkr = 162, 03
TrA = 3,99 |
P=0,4 MPa
Tabela II-1
Pkr Co2 = 7, 355MPa
Pkr N2 = 3, 393MPa
|
$$P_{\text{rA}} = \frac{P}{P_{\text{krA}}}$$
$$P_{\text{kr}} = \sum_{}^{}{r_{i}*P_{\text{kri}}}$$
PkrA = 0, 2 * 7, 355 + 0, 8 * 3, 393 = 4, 1854
$$P_{\text{rA}} = \frac{P}{P_{\text{krA}}} = \frac{0,4}{4,1854} = 0,0956$$
|
PkrA=4,18542MPa
PrA = 0, 0956
|
CpCO2, 30046, 515
kJ/(kmol*K)
CpCO2, 400 = 48, 860 kJ/(kmol*K)
CpN2, 300 = 29, 952 kJ/(kmol*K)
CpN2, 400 = 30, 576 kJ/(kmol*K)
rCo2 = 0, 2
rN2 = 0, 8
MCo2 = 44 kg/kmol
MN2 = 28 kg/kmo
|
T= 142,5℃
Cp=$\frac{\text{Cp}_{2} - \text{Cp}_{1}}{T_{2} - T_{2}}*\left( T_{p} - T_{1} \right) + \text{Cp}_{1}$
$$\text{Cp}_{CO2} = \frac{48,860 - 46,515}{400 - 300}*\left( 375 - 300 \right) + 46,515 = 48,274$$
$$\text{Cp}_{N2} = \frac{30,576 - 29,952}{200 - 100}*\left( 375 - 300 \right) + 29,952 = 30,42$$
(Cp*)T = $\sum_{}^{}{r_{i}*\text{Cp}_{i}}$
(Cp*)T =0,2*48,274+0,8*30,42=33,991
Poprawka ciśnieniowa molowego ciepła właściwego odczytana z wykresu II-8
(Cp,M)T =0,4 J/(mol*K)
(Cp,M)T =(Cp*)T+(Cp,M)T
(Cp,M)T =33,991+0,4=34,391
MMA = $\sum_{}^{}{r_{i}*M}$i
MMA =0,2*44+0,8*28=31,2
Cp=$\frac{{(Cp,}_{M})T}{M\text{MB}} = \frac{34,391}{31,2} = 1,1$
QA= GA + CpA (twyl A-twl A)= 6500*$\frac{1}{3600}*1,1*$ (440-310)=258,194 |
CpCO2 = 48, 274
kJ/(kmol*K)
CpN2 = 29, 315
kJ/(kmol*K)
(Cp*)T =33,991 kJ/(kmol*K)
(Cp,M)T=34,391 kJ/(kmol*K)
MMA =31,2
kg/kmol
Cp=1,1 kJ/kg*K
QA =258,194 kW |
tA, wl=440℃
tB, wyl=190℃
tA, wyl=310℃
tB, wl=95℃
T1 = 250
T2 = 215
|
OBLICZENIA NAWIĄZUJĄCE DO POWIERZCHNI WYMIANY CIEPŁA
T1 = tA, wl − tB, wyl = 440℃-190℃=250℃
T2 = tA, wyl − tB, wl = 310℃-95℃=215℃
gdy$\text{\ \ }\frac{{T}_{2}}{{T}_{1}} < 2$wtedy:
$${T}_{m} = \frac{{T}_{1} + {T}_{2}}{2}$$
$\frac{{T}_{2}}{{T}_{1}} = \frac{215}{250} = 0,86\ $< 2
${T}_{m} = \frac{250 + 215}{2}$=232,5℃ |
T1 = 250
T2 = 215
$$\frac{{T}_{2}}{{T}_{1}} = 0,86$$
Tm = 232, 5
|
Q=258,194KW
k=180 W/(m2*K)
∆T=232,5℃ |
Zał. k=(150÷200) W/(m2*K)
Q=k*F*∆T
FZ=$\frac{Q}{k*T}$
FZ =$\frac{258,194*1000}{180*232,5} = 6,17\ m^{2}$
Ze względu na zmienne warunki procesowe zakładamy rezerwę bezpieczeństwa 30%
FZ =6,17*1,3=8,021 m2 |
FZ =6,17m2
FZ =8,021m2 |
Pr =0,096
Tr = 5,08
z=0,98
T=648K
MA=31,2 kg/kmol
pA = 0, 4MPa
(MR)=8314,7 J/(kmol*K) |
OBLICZENIE WŁASNOŚCI FIZYCZNYCH CZYNNIKÓW
Obliczenie gęstości z uwzględnieniem poprawki ciśnieniowej
z (tablica II-13)
CZYNNIK A (GORĄCY)
$$\rho_{A} = \frac{p_{A}*M_{A}}{z*\left( \text{MR} \right)*T}$$
$$\rho_{A} = \frac{0,4*10^{6}*31,2}{0,98*8314,7*648} = 2,364kg/m^{3}$$
|
ρA = 2, 364
kg/m3
|
ηrA = 1, 9
rCo2 = 0, 2
rN2 = 0, 8
ηCo2 = 343 * 10−7
Pa * s
ηN2 = 180 * 10−7
Pa * s
|
$$\eta_{\text{krA}} = {\sum_{}^{}{\eta_{i}*}r}_{i}$$
ηkrA = 0, 2 * 343 * 10−7+0,8*180 * 10−7=212,6*10−7Pa*s
ηA = ηkrA * ηrA
ηA = 212,6*10−7 * 1, 9=403,94*10−7Pa*s |
ηkrA=212,6*10−7
Pa*s
ηA=403,94*10−7
Pa*s |
λCo2 = 0, 0450
W/(m * K)
λN2=0,0329
W/(m * K)
λrA = 1, 7
W/(m * K)
|
$$\lambda_{\text{krA}} = {\sum_{}^{}{\lambda_{i}*}r}_{i}$$
λkrA = 0, 2 * 0, 0450+0,8*0,0329=0,03532 W/(m * K)
λA = λkrA * λrA
λA = 0,03532*1,7=0,060044 W/(m * K) |
λkrA=0,03532
W/(m * K)
λA=0,060044
W/(m * K)
|
Pr =0,0714
Tr = 1,84
z=0,98
T=415,5K
MB=36,8 kg/kmol
pB = 0, 4MPa
(MR)=8314,7 J/(kmol*K) |
CZYNNIK B (ZIMNY)
$$\rho_{B} = \frac{p_{B}*M_{B}}{z*\left( \text{MR} \right)*T}$$
$$\rho_{B} = \frac{0,4*10^{6}*36,8}{0,98*8314,7*415,5} = 4,348kg/m^{3}$$
|
ρB = 4, 348
kg/m3
|
ηrB = 0, 85
rCo2 = 0, 55
rCo = 0, 3
rN2 = 0, 15
ηCo2 = 343 * 10−7
Pa * s
ηCo = 190 * 10−7
Pa * s
ηN2 = 180 * 10−7
Pa * s
|
$$\eta_{\text{krB}} = {\sum_{}^{}{\eta_{i}*}r}_{i}$$
ηkrB=0,55*343*10-7+0,3*190*10-7+0,15*180*10-7=272,65*10-7
ηB = ηkrB * ηrB
ηB = 272,65*10−7 * 0, 85= 231,75*10-7 |
ηkrB=272,65*10−7
Pa*s
ηB=231,75*10−7
Pa*s |
λCo2 = 0, 0450
W/(m * K)
λCo = 0, 0298
W/(m * K)
λN2=0,0329
W/(m * K)
λrA = 0, 85
W/(m * K)
|
$$\lambda_{\text{krB}} = {\sum_{}^{}{\lambda_{i}*}r}_{i}$$
λkrB = 0, 55 * 0, 0450+0,3*0, 0298+0,15*0,0329=0,038625
λA = λkrA * λrA
λB = 0,038625 *0,85=0,032831 W/(m * K) |
λkrB=0,038625
W/(m * K)
λB=0,032831
W/(m * K)
|
G A=1,8 kg/s
𝜌A=2, 364kg/m3
G B=2,58kg/s
𝜌B=4, 348kg/m3 |
Zał. w=(8÷30) m/s
Średnia prędkość gazu w przestrzeni międzyrurowej czynnika A
to 21 m/s
fw=$\frac{G_{A}}{\rho_{A}*w}$
fwA=$\frac{1,8}{2,364*21} = 0,0363m^{2}$
Średnia prędkość gazu w przestrzeni międzyrurowej czynnika B
to 10 m/s
fw=$\frac{G_{B}}{\rho_{B}*w}$
fwB=$\frac{2,58}{4,348*10} = 0,05934$= fm |
fwA=0, 0363m2 |
|
DOBÓR KONSTRUKCJI WYMIENNIKA CIEPŁA Z TABLIC (TABELA IV-32)
Wiązka rurek dz =25×2mm
Przekrój wewnętrzny rurek fw = 0,0377 m2
Liczba rurek n= 109
Zewnętrzna średnica i grubość płaszcza Dz×s1 =406,4×8,8 mm
Średnica koła ograniczającego otwory d1 =368 mm
Przekrój przestrzeni międzyrurowej fm= 0,0652 m2
Zewnętrzna powierzchnia wymiany ciepła Fz= 8,56 m2
Masa wiązki rurek m=123 kg
Długość rurek wewnętrznych L=1 m |
|
G A=1,8 kg/s
𝜌A=2, 364kg/m3
fw = 0,0377 m2
ηA = 403, 94 * 10−7
Pa*s
Cp = 1100 J/kg*K
λA=0, 060044
W/(m * K)
dw = 0, 021m
|
SPRAWDZENIE PRZYJĘTEJ KONSTRUKCJI APARATU
Wnikanie ciepła po stronie czynnika A
wA=$\frac{\rho_{A}}{f_{w}*\rho}$
wA=$\frac{1,8}{0,0377*2,364} = 20,2\ m/s$
Re=$\frac{w_{A}*d*\rho_{A}}{\eta_{A}}$
Re=$\frac{20,2*0,021*2,364}{403,94*10^{- 7}}$ =24825
Pr=$\frac{Cp*\eta_{A}}{\lambda_{A}}$
Pr=$\frac{1100*403,94*10^{- 7}}{0,060044}$=0,74
Nu=C*ReA*PrB
Nu=0,023*248250,8 *0,740,4 =66,89
$$\alpha_{A} = \frac{\text{Nu}_{A}*\lambda_{A}}{d_{w}}$$
$$\alpha_{A} = \frac{66,89*0,060044}{0,021} = 191,25\ W/m^{2}*K$$
|
wA=20, 2 m/s
Re =24825
Pr=0,74
Nu=66,89
αA = 191, 25 W/m2 * K
|
G=2,58
fm=0,0652
ρB=4,348 kg/m3
ηB=231, 75 * 10−7
Pa*s
Cp=990 J/kg*K
λB=0, 032831
W/(m * K)
|
WB=$\frac{G}{f_{m}*\rho_{B}}$
WB=$\frac{2,58}{0,0652*4,348} = 9,1\ m/s$
$$d_{e} = \frac{D^{2} - nd_{z}^{2}}{D + nd_{z}}$$
D=406,4-(2*8,8)=388,8mm=0,3888 m
dz=25mm=0,025m
$$d_{e} = \frac{{0,3888}^{2} - 109*{0,025}^{2}}{0,3888 - 109*0,025} = 0,027$$
Re=$\frac{w_{B}*d_{e}*\rho_{B}}{\eta_{B}}$
Re=$\frac{9,1*0,027*4,348}{231,75*10^{- 7}}$ =46097
Pr=$\frac{Cp*\eta_{\mathbf{B}}}{\lambda_{B}}$
Pr=$\frac{990*231,75*10^{- 7}}{0,032831}$=0,7
Nu=C*ReA*PrB
Nu=0,023*460970,8 *0,70,4 =107,32
$$\alpha_{B} = \frac{\text{Nu}_{B}*\lambda_{B}}{d_{e}}$$
$$\alpha_{B} = \frac{107,32*0,032831}{0,027} = 130,5\ W/m^{2}*K$$
|
W=9, 1 m/s B
D=0,3888 m
de = 0, 027m
Re =46097
Pr=0,7
Nu==107,32
αB = 130, 5 W/m2 * K
|
αA=191, 25
TA=648K
αB=130, 5
TB=415,5K |
Tść = $\frac{\alpha_{A}*T_{A} + \alpha_{B}*T_{B}}{\alpha_{A} + \alpha_{B}}$
Tść = $\frac{191,25*648 + 130,5*415,5}{191,25 + 130,5} = 553,7K = 280$
Tkr = 226,075K
Tr =$\frac{T}{T\text{kr}}$
Tr=$\frac{553,7}{226,075} = 2,45$
ηr = 1, 08
ηkr = 272, 65 * 10−7
ηsc, B = ηr * ηkr
ηsc, B = 1, 08*272, 65 * 10−7=291,4*10−7Pa * s |
Tść =553,7K
Tr = 2,45
ηsc, B=291,4*10−7Pa * s |
h=0,024m
Dw=0,39m
no=11
drz=0,021
GB=2,58 kg/s
g = 67, 61 kg/m2*s
de = 0, 027m
ηB = 231, 75 * 10−7
Pa*s
η,sc = 291, 4 * 10−7
Pa*s
λB=0,032831
W/(m * K)
de=0, 027m |
Fz =h*(Dw –no drz)
Zał. 0,1D<L’<D
0,039 < L’<0,39
L’=h=0,24
Fz =0,24*(0,39-11*0,021)=0,03816 m2
g=$\frac{G}{V}$
g=$\frac{2,58}{0,03816} = 67,61$
Re=$\frac{g*de}{\eta}$
Re=$\frac{67,61*0,027}{231,75*10^{- 7}} = 78769$
Pr=0,7
Nu=0,36*$\text{Re}^{0,55}*\Pr^{0,33}*\left( \frac{\eta_{B}}{\eta_{\mathbf{,sc}}} \right)^{0,14}$
Nu=0,36*$78769^{0,55}*{0,7}^{0,33}*\left( \frac{231,75*10^{- 7}}{291,4*10^{- 7}} \right)^{0,14} = 152,85$
$\alpha_{B} = \frac{Nu*\lambda_{B}}{\text{de}}$
$$\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\text{\ α}_{B} = \frac{152,85*0,032831}{0,027} = 185,86\ W/m^{2}*K$$
|
Fz =0,03816 m2
g=67,61 kg/m2*s
Re=78769
Nu=152, 85
αB = 185, 86 W/m2 * K
|
si = 0, 0088 m
λ1=50
W/m * K
λ2 = 47, 1
W/m * K
αA = 191, 25 W/m2 * K
αB = 185, 86
W/m2 * K
Q=258, 194 kW
ΔT=232,5K |
$\frac{1}{\alpha_{\text{os}}}$= 0,00176*2=0,00352 m2 * K/W
$$\frac{1}{k} = \frac{1}{\alpha_{A}} + \frac{s_{i}}{\lambda_{i}} + \frac{1}{\alpha_{B}} + \frac{1}{\alpha_{\text{os}}}$$
$$\lambda_{i} = \frac{\lambda_{2} - \lambda_{1}}{t_{2} - t_{1}}*(t_{p} - t_{1}) + \lambda_{1}$$
$$\lambda_{i} = \frac{47,1 - 50}{300 - 200}*\left( 280 - 200 \right) + 50 = 47,68\ W/m^{2}*K$$
$$\frac{1}{k} = \frac{1}{191,25} + \frac{0,0088}{47,68} + \frac{1}{185,86} + 0,00352 = 0,0143$$
k=69,93 W/m2 * K
F=$\frac{Q}{k*\Delta T}$
F=$\frac{258,194*1000}{69,93*232,5} = 15,9\ m^{2}$
Fz =F+0,3F=15,9+0,3*15,9=20,67m2 |
$\frac{1}{\alpha_{\text{os}}}$=0,00352 m2 * K/W
λi = 47, 68 W/m * K
k=69,93 W/m * K
F=15, 9 m2
Fz=20,67m2 |
L=3m
L’=0,24m |
Po przeliczeniu i dobraniu nowej konstrukcji wymiennika nowa powierzchnia wymiany ciepła wynosi 25,7 m2
Natomiast długość rurek wynosi 3 m
Liczba przegród:
N=$\frac{L}{L^{'}}$
N$= \frac{3}{0,24} = 12,5$=13 |
N=13 |
P=0,4Mpa
MCO2 = 44 kg/kmol
z=0,98
(MR)=8314,7 J/(kmol*K)
T=713K
MN2=28 kg/kmol
rCO2=0,2
rN2=0,8 |
OBLICZENIA HYDRAULICZNE:
Czynnik gorący:
Na wlocie:
$$\rho_{i} = \frac{p*M_{i}}{z*\left( \text{MR} \right)*T}$$
$$\rho_{co2} = \frac{0,4*10^{6}*44}{0,98*8314,7*713} = 3,02\ kg/m^{3}$$
$$\rho_{N2} = \frac{0,4*10^{6}*28}{0,98*8314,7*713} = 1,93\ kg/m^{3}$$
ρwl = 0, 2 * 3, 02 + 0, 8 * 1, 93 = 2, 148 kg/m3
|
ρco2 = 3, 02 kg/m3
ρN2 = 1, 93 kg/m3
ρwl = 2, 148 kg/m3
|
GA = 1, 8 kg/s
ρwl = 2, 148 kg/m3
|
Zał. w=(20-÷30)m/s
Przyjmujemy w= 25 m/s do obliczeń
$$d_{w,wl} = \sqrt{\frac{4*G_{A}}{\pi*\rho_{\text{wl}}*w}}$$
$d_{w,wl} = \sqrt{\frac{4*1,8}{\pi*2,148*25}} = 0,207$m =207 mm
Z tablic: dz = 219 mm
gn = 5,6mm
m =33,2kg/m
dw = 219-2*5,6=207,8mm
wrz = $\frac{4*G_{A}}{\pi*\rho*d_{w}^{2}}$
wrz = $\frac{4*1,8}{\pi*2,148*{0,2078}^{2}} = 24,71\frac{m}{s}$ |
dw, wl = 207mm
wrz=24, 71m/s |
P=0,4Mpa
MCO2 = 44 kg/kmol
z=0,98
(MR)=8314,7 J/(kmol*K)
T=583 K
MN2=28 kg/kmol
rCO2=0,2
rN2=0,8
GA = 1, 8 kg/s
ρwyl = 2, 46 kg/m3
|
na wylocie :
$$\rho_{i} = \frac{p*M_{i}}{z*\left( \text{MR} \right)*T}$$
$$\rho_{co2} = \frac{0,4*10^{6}*44}{0,98*8314,7*583} = 3,7\ kg/m^{3}$$
$$\rho_{N2} = \frac{0,4*10^{6}*28}{0,98*8314,7*583} = 2,36\ kg/m^{3}$$
ρwyl = 0, 2 * 3, 7 + 0, 8 * 2, 37 = 2, 46 kg/m3
Zał. w=(20-÷30)m/s
Przyjmujemy w= 25 m/s do obliczeń
$$d_{w,wl} = \sqrt{\frac{4*G_{A}}{\pi*\rho_{\text{wyl}}*w}}$$
$d_{w,wl} = \sqrt{\frac{4*1,8}{\pi*2,46*25}} = 0,193$m =193 mm
Z tablic: dz = 219 mm
gn = 5,6mm
m =33,2kg/m
dw = 219-2*6,3=207,8mm
wrz = $\frac{4*G_{A}}{\pi*\rho*d_{w}^{2}}$
wrz = $\frac{4*1,8}{\pi*2,46*{0,2078}^{2}} = 21,56\frac{m}{s}$ |
ρco2 = 3, 7 kg/m3
ρN2 = 2, 36 kg/m3
ρwyl = 2, 46 kg/m3
dw, wl = 193mm
wrz=21, 56m/s |
P=0,4Mpa
MCO2 = 44 kg/kmol
z=0,98
(MR)=8314,7 J/(kmol*K)
T=368 K
MCO=28 kg/kmol
MN2=28 kg/kmol
rCO2=0,55
rN2=0,15
rCO=0,3
GB = 2, 58 kg/s
ρwl=4, 912 kg/m3
P=0,4Mpa
MCO2 = 44 kg/kmol
z=0,98
(MR)=8314,7 J/(kmol*K)
T=463 K
MCO=28 kg/kmol
MN2=28 kg/kmol
rCO2=0,55
rN2=0,15
rCO=0,3
GB = 2, 58 kg/s
ρwyl=3, 905kg/m3 |
czynnik zimny:
Na wlocie:
$$\rho_{i} = \frac{p*M_{i}}{z*\left( \text{MR} \right)*T}$$
$$\rho_{co2} = \frac{0,4*10^{6}*44}{0,98*8314,7*368} = 5,87\ kg/m^{3}$$
$$\rho_{\text{CO}} = \frac{0,4*10^{6}*28}{0,98*8314,7*368} = 3,74\ kg/m^{3}$$
$$\rho_{N2} = \frac{0,4*10^{6}*28}{0,98*8314,7*368} = 3,74\ kg/m^{3}$$
ρwl = 0, 55 * 5, 87 + 0, 3 * 3, 74 + 0, 15 * 3, 74 = 4, 912 kg/m3
Zał. w=(20÷30)m/s
Do obliczeń przyjmujemy 25 m/s
$$d_{w,wl} = \sqrt{\frac{4*G_{B}}{\pi*\rho_{\text{wl}}*w}}$$
$d_{w,wl} = \sqrt{\frac{4*2,58}{\pi*4,912*25}} = 0,164$m =164 mm
Z tablic: dz = 193,7 mm
gn = 5,6mm
m =25,9/m
dw = 193,7-2*5,6=182,5 mm
wrz = $\frac{4*G_{A}}{\pi*\rho*d_{w}^{2}}$
wrz = $\frac{4*2,58}{\pi*4,912*{0,1825}^{2}} = 20,08\frac{m}{s}$
na wylocie:
$$\rho_{i} = \frac{p*M_{i}}{z*\left( \text{MR} \right)*T}$$
$$\rho_{co2} = \frac{0,4*10^{6}*44}{0,98*8314,7*463} = 4,67\ kg/m^{3}$$
$$\rho_{\text{CO}} = \frac{0,4*10^{6}*28}{0,98*8314,7*463} = 2,97kg/m^{3}$$
$$\rho_{N2} = \frac{0,4*10^{6}*28}{0,98*8314,7*463} = 2,97\ kg/m^{3}$$
ρwl = 0, 55 * 4, 67 + 0, 3 * 2, 97 + 0, 15 * 2, 97 = 3, 905kg/m3
Zał. w=(20-÷30)m/s
$$d_{w,wl} = \sqrt{\frac{4*G_{A}}{\pi*\rho*w}}$$
$d_{w,wl} = \sqrt{\frac{4*2,58}{\pi*3,905*25}} = 0,183$m =183 mm
Z tablic: dz = 219 mm
gn = 6,3 mm
m =33,2 kg/m
dw = 219-2*6,3=206,4 mm
wrz = $\frac{4*G_{A}}{\pi*\rho*d^{2}}$
wrz = $\frac{4*2,58}{\pi*3,905*{0,2064}^{2}} = 19,75m/s$ |
ρco2 = 5, 87 kg/m3
ρCO = 3, 74 kg/m3
ρN2 = 3, 74 kg/m3
ρwl = 4, 912 kg/m3
dw, wl = 164 mm
wrz =20,08m/s
ρco2 = 4, 67 kg/m3
ρCO = 2, 97 kg/m3
ρN2 = 2, 94 kg/m3
ρwl = 3, 905 kg/m3
dw, wl = 206, 4 mm
wrz =19,75 m/s |
|
UOGÓLNIONY SCHEMAT WYMIENNIKA CIEPŁA :
|
|
|
Czynnik A
|
wlot |
Średnia |
wylot |
T |
440℃ |
375 ℃ |
310 ℃ |
η |
380,554*10-7
Pa*s |
403,94*10-7 Pa*s |
335,9*10-7
Pa*s |
ρ |
2,148 kg/m3 |
2,364 kg/m3 |
2,46 kg/m3 |
λ |
- |
0,03532 W/m*K |
- |
Czynnik B
|
wlot |
Średnia |
wylot |
T |
95℃ |
142,5 ℃ |
190 ℃ |
η |
212,65*10-7
Pa*s |
231,75*10-7 Pa*s |
250,82*10-7
Pa*s |
ρ |
4,912 kg/m3 |
4,348 kg/m3 |
3,905 kg/m3 |
λ |
- |
0,03283 W/m*K |
- |
|
|
WA wl=24,71m/s
ρ=2,148
Kg/m3
dF0=0,2078m
dF1=0,39m
η = 380, 554 * 10−7
Pa*s
w=24,71 m/s
d=0,2078m
ξ2 = 0, 5
ξ1=0,64
st2=0,3
st1=0,2 |
$$P = \xi*\frac{w^{2}*\rho}{2}$$
$$F_{0} = \frac{\pi*d_{F0}^{2}}{4} = \frac{\pi*{0,2078}^{2}}{4} = 0,034$$
$$F_{1} = \frac{\pi*d_{F1}^{2}}{4} = \frac{\pi*{0,39}^{2}}{4} = 0,12$$
$$\frac{F_{0}}{F_{1}} = \frac{0,034}{0,12} = 0,28$$
$$Re = \frac{w*d*\rho}{\eta}$$
$Re = \frac{24,71*0,2078*2,148}{380,554*10 - 7}$=289825
Odczytujemy z tablic ξ0, 28
$$\xi_{0,28} = \frac{\xi_{2} - \xi_{1}}{\text{st}_{2} - \text{st}_{1}}*\left( \text{st}_{p} - \text{st}_{1} \right) + \xi_{1}$$
$$\xi_{0,28} = \frac{0,5 - 0,64}{0,3 - 0,2}*\left( 0,28 - 0,2 \right) + 0,64 = 0,528$$
$$P = 0,528*\frac{{24,71}^{2}*2,148}{2} = 380,35\ Pa$$
|
F0=0, 034
F1=0,12
$\frac{F_{0}}{F_{1}}$=0,28
Re=289825
ξ0, 28=0,528
P = 380, 35Pa
|
WA wl=20,2m/s
ρ=2,148
Kg/m3
dF1=0,39m
η = 380, 554 * 10−7
Pa*s
w=20,2 m/s
d=0,39m
ξ2 = 0, 3
ξ1=0,35
st2=0,4
st1=0,3 |
$$P = \xi*\frac{w^{2}*\rho}{2}$$
$$F_{0} = \frac{\pi*d^{2}}{4} = 0,0377\ z\ tablic$$
$$F_{1} = \frac{\pi*d^{2}}{4} = \frac{\pi*{0,39}^{2}}{4} = 0,12$$
$$\frac{F_{0}}{F_{1}} = \frac{0,0377}{0,12} = 0,314$$
$$Re = \frac{w*d*\rho}{\eta}$$
$$Re = \frac{20,2*0,39*2,148}{380,554*10^{- 7}} = 4389153$$
$$\xi_{0,14} = \frac{\xi_{2} - \xi_{1}}{\text{st}_{2} - \text{st}_{1}}*\left( \text{st}_{p} - \text{st}_{1} \right) + \xi_{1}$$
$$\xi_{0,314} = \frac{0,3 - 0,35}{0,4 - 0,3}*\left( 0,314 - 0,3 \right) + 0,35 = 0,343$$
$$P = 0,343*\frac{{20,2}^{2}*2,148}{2} = 150,32\ Pa$$
|
F0=0, 0377
F1=0,12
$\frac{F_{0}}{F_{1}}$=0,314
Re=4 389 153
ξ0, 28=0,343
P = 150, 32 Pa
|
GA=1,8 kg/s
fw1=0,377m2
ρ= 430, 94 * 10−7
Kg/m3
d = 0,021m |
$$P = \lambda*\frac{w^{2}*\rho}{2}*\frac{L}{d}$$
$$w = \frac{G_{A}}{\text{fw}_{1}*\rho} = \frac{1,8}{0,0377*2,364} = 20,58\ m/s$$
Re=$\frac{w*d*\rho}{\eta} = \frac{20,58*0,021*2,364}{430,94*10^{- 7}} = 23708$
$$\lambda = \frac{0,3614}{\text{Re}^{0,25}} = \frac{0,3614}{23708^{0,25}} = 0,029$$
$$P = 0,029*\frac{{20,58}^{2}*2,364}{2}*\frac{3}{0,021} = 2074Pa$$
|
w=20,58 m/s
Re=23708
λ=0,029
P=2074 Pa |
WA wl=20,2m/s
ρ=2,46
Kg/m3
dF1=0,39m
η = 335, 9 * 10−7
Pa*s
w=20,2 m/s
d=0,39m
ξ2 = 0, 36
ξ1=0,5
st2=0,4
st1=0,3 |
$$P = \xi*\frac{w^{2}*\rho}{2}$$
$$F_{0} = \frac{\pi*d^{2}}{4} = 0,0377\ z\ tablic$$
$$F_{1} = \frac{\pi*d^{2}}{4} = \frac{\pi*{0,39}^{2}}{4} = 0,12$$
$$\frac{F_{0}}{F_{1}} = \frac{0,0377}{0,12} = 0,314$$
$$Re = \frac{w*d*\rho}{\eta}$$
$$Re = \frac{20,2*0,39*2,46}{335,9*10^{- 7}} = 576953$$
$$\xi_{0,14} = \frac{\xi_{2} - \xi_{1}}{\text{st}_{2} - \text{st}_{1}}*\left( \text{st}_{p} - \text{st}_{1} \right) + \xi_{1}$$
$$\xi_{0,314} = \frac{0,36 - 0,5}{0,4 - 0,3}*\left( 0,314 - 0,3 \right) + 0,5 = 0,48$$
$$P = 0,48*\frac{{20,2}^{2}*2,46}{2} = 240,9\ Pa$$
|
F0=0, 0377
F1=0,12
$\frac{F_{0}}{F_{1}}$=0,314
Re=576953
ξ0, 28=0,48
P = 240, 9 Pa
|
WA wl=21,56m/s
ρ=2,46
Kg/m3
dF0=0,2078m
dF1=0,39m
η = 335, 9 * 10−7
Pa*s
w=21,56 m/s
d=0,2078m
ξ2 = 0, 35
ξ1=0,45
st2=0,3
st1=0,2 |
$$P = \xi*\frac{w^{2}*\rho}{2}$$
$$F_{0} = \frac{\pi*d^{2}}{4} = \frac{\pi*{0,2078}^{2}}{4} = 0,034$$
$$F_{1} = \frac{\pi*d^{2}}{4} = \frac{\pi*{0,39}^{2}}{4} = 0,12$$
$$\frac{F_{0}}{F_{1}} = \frac{0,034}{0,12} = 0,28$$
$$Re = \frac{w*d*\rho}{\eta}$$
$$Re = \frac{21,56*0,2078*2,46}{335,9*10^{- 7}} = 3219616$$
$$\xi_{0,14} = \frac{\xi_{2} - \xi_{1}}{\text{st}_{2} - \text{st}_{1}}*\left( \text{st}_{p} - \text{st}_{1} \right) + \xi_{1}$$
$$\xi_{0,314} = \frac{0,35 - 04}{0,3 - 0,2}*\left( 0,28 - 0,2 \right) + 0,4 = 0,36$$
$$P = 0,36*\frac{{21,56}^{2}*2,46}{2} = 205,83\ Pa$$
|
F0=0, 034
F1=0,12
$\frac{F_{0}}{F_{1}}$=0,28
Re=3219616
ξ0, 28=0,36
P = 205, 83Pa
|
|
SUMA OPORÓW PRZEPŁYWU CZYNNIKA GORĄCEGO
$$\sum_{}^{}{\Delta P = {\Delta P}_{1} +}{\Delta P}_{2} + {\Delta P}_{3} + {\Delta P}_{4} + {\Delta P}_{5}$$
$$\sum_{}^{}{\Delta P = 380,35 + 150,32 + 2074 + 240,9 + 205,83 = 3051,4\ Pa}$$
|
$$\sum_{}^{}{\Delta P = 3051,4\ Pa}$$
|
GB=2,58 kg/s
De=0,027m
ηsr=231, 75 * 10−7
Pa*s
L′=0,24m
D=0,39m
n0=11
dzr=0,025m |
OPORY PRZEPŁYWU W PRZESTRZENI MIĘDZYRUROWEJ
$$\Delta P = \lambda*\left( N + 1 \right)*\frac{w_{h}^{2}*\rho_{sr}}{2}*\frac{D}{\text{de}}$$
$$Re = \frac{G_{B}*de}{\eta_{sr}} = \frac{2,58*0,027}{231,75*10^{- 7}} = 3005$$
$$\lambda = \frac{0,3614}{\text{Re}^{0,25}} = \frac{0,3614}{3005^{0,25}} = 0,049$$
$$w_{h} = \frac{G_{B}}{\rho_{\text{Sr}}*L^{'}*(D - n_{0}*\text{dz}_{r})}$$
$$w_{h} = \frac{2,58}{4,348*0,24*(0,39 - 11*0,025)} = 21,5m/s$$
$$\Delta P = 0,049*\left( 11 + 1 \right)*\frac{{21,5}^{2}*4,348}{2}*\frac{0,39}{0,027} = 8535,22\ Pa$$
|
Re=3005
λ=0,049
wh=21,5 m/s
ΔP=8535,22 Pa |