Praca kontrolna nr 1 z mechaniki ogólnej cz 1

MECHANIKA OGÓLNA

PRACA KONTROLNA NR 1

Dawid Fedko

Budownictwo

Grupa I

Zadanie 1

Dane:

Siła P1 P2 P3 P4 P5
Moduł [kN] 6 4 5 2 3
Kąt kierunkowy [°] 31 118 173 242 333
Kąt ostry[°] 31 62 7 62 27
cos i 0,857 0,469 0,993 0,469 0,891
sin i 0,515 0,883 0,122 0,883 0,454
  1. Metoda ogólna:


$$W_{x} = \sum_{i = 1}^{5}P_{i}x = \sum_{i = 1}^{5}{P_{i}*\cos \propto_{i}}$$


$$W_{y} = \sum_{i = 1}^{5}P_{i}y = \sum_{i = 1}^{5}{P_{i}*\sin\alpha_{i}}$$

Wx = 6 * 0, 857 − 4 * 0, 469 − 5 * 0, 993 − 2 * 0, 469 + 3 * 0, 891 = 0, 04 [kN]

Wy = 6 * 0, 515 + 4 * 0, 883 + 5 * 0, 122 − 2 * 0, 883 − 3 * 0, 454 = 4, 10 [kN]


$$\overset{\overline{}}{W} = Wx\overset{\overline{}}{i} + Wy\overset{\overline{}}{j} = 0,03\overset{\overline{}}{i} + 4,10\overset{\overline{}}{j}0$$


$$W = \sqrt{Wx^{2} + \text{Wy}^{2}}$$


$$W = \sqrt{{0,04}^{2} + {4,10}^{2}} = \sqrt{16,8116} \approx 4,10\lbrack kN\rbrack$$


$${\tan \propto}^{'} = |\frac{W_{y}}{W_{x}}|$$


$${\tan \propto}^{'} = \left| \frac{4,10}{0,03} \right| \approx 102,5$$


arctan∝ ≈ 89, 44


∝= ∝


∝= 89, 44

  1. Metoda ze szkicu:


$$\propto_{1}^{'} = \propto_{1}$$


$$\propto_{2}^{'} = 180 - \propto_{2}$$


$$\propto_{3}^{'} = 180 - \propto_{3}$$


$$\propto_{4}^{'} = \propto_{4} - 180$$


$$\propto_{5}^{'} = {360 - \propto}_{5}$$


$$W_{x} = \pm \sum_{i = 1}^{5}P_{i}x = \pm \sum_{i = 1}^{5}{P_{i}*\cos \propto_{i}}'$$


$$W_{y} = \pm \sum_{i = 1}^{5}P_{i}y = \pm \sum_{i = 1}^{5}{P_{i}*\sin{\alpha_{i}'}}$$

Wx = 6 * 0, 857 − 4 * 0, 469 − 5 * 0, 993 − 2 * 0, 469 + 3 * 0, 891 = 0, 04 [kN]

Wy = 6 * 0, 515 + 4 * 0, 883 + 5 * 0, 122 − 2 * 0, 883 − 3 * 0, 454 = 4, 10 [kN]


$$\overset{\overline{}}{W} = Wx\overset{\overline{}}{i} + Wy\overset{\overline{}}{j} = 0,03\overset{\overline{}}{i} + 4,10\overset{\overline{}}{j}$$

Siła W
Moduł [kN] 4,1
Kąt kierunkowy [°] 89,44

Plan sił 1 cm1 m Wielobok sił 1cm1 kN

W = 4,1 [kN]

Wx =0,05 [kN]

Wy = 4,1 [kN]

αw =89

Zadanie 2


$$\overset{\overline{}}{P_{1}} = - 5\overset{\overline{}}{i} + 6\overset{\overline{}}{j} + 7\overset{\overline{}}{k}$$


$$\overset{\overline{}}{P_{2}} = 7\overset{\overline{}}{i} + 4\overset{\overline{}}{j} + 3\overset{\overline{}}{k}$$


$$\overset{\overline{}}{P_{3}} = 6\overset{\overline{}}{i} + 6\overset{\overline{}}{j} - 5\overset{\overline{}}{k}$$


$$\overset{\overline{}}{W} = \overset{\overline{}}{P_{1}} + \overset{\overline{}}{P_{2}} + \overset{\overline{}}{P_{3}} = \overset{\overline{}}{W_{x}} + \overset{\overline{}}{W_{y}} + \overset{\overline{}}{W_{z}} = W_{x}\overset{\overline{}}{i} + W_{y}\overset{\overline{}}{j} + W_{z}\overset{\overline{}}{k} = \ = \left( - 5 + 7 + 6 \right)\overset{\overline{}}{i} + \left( 6 + 4 + 6 \right)\overset{\overline{}}{j} +$$


$$+ \left( 7 + 3 - 5 \right)\overset{\overline{}}{k} = 8\overset{\overline{}}{i} + 16\overset{\overline{}}{j} + 5\overset{\overline{}}{k}$$

$W = \sqrt{8^{2} + 16^{2} + 5^{2}} = \sqrt{64 + 256 + 25} = \sqrt{345} \approx 18,57\ \lbrack kN$]

$\cos{\propto_{W} = \frac{W_{x}}{W}} = \frac{8}{18,57} = 0,430$ w = 64, 48

$\cos{\beta_{W} = \frac{W_{y}}{W}} = \frac{16}{18,57} = 0,862$ βW = 30, 50

$\cos{\gamma_{W} = \frac{W_{z}}{W} =}\frac{5}{18,57} = 0,269$ γW = 74, 38


W + βW + γW = 1


0, 4302 + 0, 8622 + 0, 2692 = 1

Zadanie 3

Dane:

Siła P1 P2 P3 P4
Moduł [kN] 6 8 5 4
Kąt kierunkowy [°] 43 121 190 300
cos i 0,731 -0,515 -0,985 0,5
sin i 0,682 0,857 -0,174 -0,866
Kąt ostry [°] 43 59 10 60
cos i 0,731 0,515 0,985 0,5
Sin i 0,682 0,857 0,174 0,866
  1. Metoda ogólna:


$$\overset{\overline{}}{R} = \sum_{i = 1}^{4}P_{i} = Rx\overset{\overline{}}{i} + \text{Ry}\overset{\overline{}}{j}$$


$$R_{x} = \sum_{i = 1}^{4}P_{i}x = \sum_{i = 1}^{4}{P_{i}*\cos \propto_{i}}$$


$$R_{y} = \sum_{i = 1}^{4}P_{i}y = \sum_{i = 1}^{4}{P_{i}*\sin\alpha_{i}}$$

RX = 6*0,731 + 8*(-0,515) + 5*(-0,985) + 4*0,5 = 4,386 - 4,12 - 4,925 + 2 = -2,659 [kN]

RY = 6*0,682 + 8*0,857+5*(-0,174)+4*(-0,866)=4,092+6,856-0,87-3,464 = 6,614 [kN]

$\overset{\overline{}}{\text{R\ }}$= -2,66$\overset{\overline{}}{i}$ + 6,61$\overset{\overline{}}{j}$


$$R = \sqrt{Rx^{2} + \text{Ry}^{2}}$$


$$R = \sqrt{{( - 2,66)}^{2} + {6,61}^{2}} = \sqrt{50,7677} \approx 7,125\lbrack kN\rbrack$$


$${\tan \propto}^{'} = |\frac{R_{y}}{R_{x}}|$$


$${\tan \propto}^{'} = \left| \frac{6,61}{- 2,66} \right| \approx 0,0434$$


∝= 180 − ∝


∝'= arctan∝ ≈ 68, 08


∝= 111, 92

$\overset{\overline{}}{r}$1 = -3$\overset{\overline{}}{i}$ - 3$\overset{\overline{}}{j}$ $\overset{\overline{}}{P}$1 = 4,386$\overset{\overline{}}{i}$ + 4,092$\overset{\overline{}}{j}$

$\overset{\overline{}}{r}$2 = 6 $\overset{\overline{}}{i}$ $\overset{\overline{}}{P}$2 = -4,12$\overset{\overline{}}{i}$ + 36,856$\overset{\overline{}}{j}$

$\overset{\overline{}}{r}$3 = 9 $\overset{\overline{}}{i}$ - 4$\overset{\overline{}}{j}$ $\overset{\overline{}}{P}$3 = -4,925$\overset{\overline{}}{i}$ – 0,87$\overset{\overline{}}{j}$

$\overset{\overline{}}{r}$4 = 7 $\overset{\overline{}}{i}$ - 7$\overset{\overline{}}{j}$ $\overset{\overline{}}{P}$4 = 2$\overset{\overline{}}{i}$ – 3,464$\overset{\overline{}}{j}$


$${\overset{\overline{}}{M}}_{K} = \sum_{i = 1}^{4}{\overset{\overline{}}{r_{i}}\text{\ x}}\overset{\overline{}}{P_{i}}$$


$${\overset{\overline{}}{M}}_{K} = \left| \begin{matrix} \overset{\overline{}}{i} & \overset{\overline{}}{j} & \overset{\overline{}}{k} \\ - 3 & - 3 & 0 \\ 4,386 & 4,092 & 0 \\ \end{matrix} \right| + \ \left| \begin{matrix} \overset{\overline{}}{i} & \overset{\overline{}}{j} & \overset{\overline{}}{k} \\ 6 & 0 & 0 \\ - 4,12 & 6,856 & 0 \\ \end{matrix} \right| + \ \left| \begin{matrix} \overset{\overline{}}{i} & \overset{\overline{}}{j} & \overset{\overline{}}{k} \\ 9 & - 4 & 0 \\ - 4,925 & - 0,87 & 0 \\ \end{matrix} \right| + \ \left| \begin{matrix} \overset{\overline{}}{i} & \overset{\overline{}}{j} & \overset{\overline{}}{k} \\ 7 & - 7 & 0 \\ 2 & - 3,464 & 0 \\ \end{matrix} \right| =$$


$$= \left( - 0,882 + 41,136 - 27,53 - 10,248 \right)\overset{\overline{}}{k} = 4,24\overset{\overline{}}{k}$$

  1. Metoda ze szkicu:


$$\overset{\overline{}}{R} = \text{Rx}\overset{\overline{}}{i} + \text{Ry}\overset{\overline{}}{j}$$


$$R_{x} = \pm \sum_{i = 1}^{4}{P_{i}*\cos{\propto '}_{i}}$$


$$R_{y} = \pm \sum_{i = 1}^{4}{P_{i}*\sin{\alpha'}_{i}}$$


Rx = 6 * 0, 731 − 8 * 0, 515 − 5 * 0, 985 + 4 * 0, 5 = 4, 386 − 4, 12 − 4, 925 + 2 = −2, 659[kN]


Ry = 6 * 0, 682 + 8 * 0, 857 − 5 * 0, 174 − 4 * 0, 866 = 4, 092 + 6, 856 − 0, 87 − 3, 464 = 6, 614[kN]

$\overset{\overline{}}{\text{R\ }}$= -2,66$\overset{\overline{}}{i}$ + 6,61$\overset{\overline{}}{j}$


$$R = \sqrt{Rx^{2} + \text{Ry}^{2}}$$


$$R = \sqrt{{( - 2,66)}^{2} + {6,61}^{2}} = \sqrt{50,7677} \approx 7,125\ \lbrack kN\rbrack$$


$${\overset{\overline{}}{M}}_{K} = \pm \sum_{i = 1}^{4}{P_{i}*}c_{i}$$


$${\overset{\overline{}}{M}}_{K} = 3*4,386 - 3*4,092 + 6*6,856 - 4*4,925 - 9*0,87 + 7*2 - 7*3,464 =$$


0, 882 + 41, 136 − 27, 53 − 10, 248 = 4, 24 [kNm]

Plan sił 0,5 cm1 m Wielobok sił 0,5 cm1 kN

R =7,125 [kN]

Rx = 2,66 [kN]

Ry = 6,61 [kN]

αR = 112

Zadanie 4

Dane:

Siła P1 P2 P3 P4
Moduł [kN] 6 8 5 4
Kąt kierunkowy [°] 43 151 220 300
cos i 0,731 -0,875 -0,766 0,5
sin i 0,682 0,485 -0,643 -0,866
Kąt ostry [°] 43 29 40 60
cos i 0,731 0,875 0,766 0,5
Sin i 0,682 0,485 0,643 0,866
  1. Metoda ogólna:


$$\overset{\overline{}}{W} = \sum_{i = 1}^{4}P_{i} = Wx\overset{\overline{}}{i} + \text{Wy}\overset{\overline{}}{j}$$


$$W_{x} = \sum_{i = 1}^{4}P_{i}x = \sum_{i = 1}^{4}{P_{i}*\cos \propto_{i}}$$


$$W_{y} = \sum_{i = 1}^{4}P_{i}y = \sum_{i = 1}^{4}{P_{i}*\sin\alpha_{i}}$$


Wx = 6 * 0, 731 + 8 * (−0,875) + 5 * (−0,766) + 4 * 0, 5 = 4, 386 − 7 − 3, 83 + 2 = −4, 444 [kN]


Wy = 6 * 0, 682 + 8 * 0, 485 + 5 * (−0,643) + 4 * (−0,866) = 4, 092 + 3, 88 − 3, 215 − 3, 464 = 1, 293[kN]

$\overset{\overline{}}{\text{W\ }}$= -4,444$\overset{\overline{}}{i}$ + 1,293$\overset{\overline{}}{j}$


$$W = \sqrt{Wx^{2} + \text{Wy}^{2}}$$


$$W = \sqrt{{( - 4,444)}^{2} + {1,293}^{2}} = \sqrt{21,42} \approx 4,628\ \lbrack kN\rbrack$$


$${\tan \propto}^{'} = |\frac{W_{y}}{W_{x}}|$$


$${\tan \propto}^{'} = \left| \frac{1,293}{- 4,444} \right| \approx 0,005$$


∝= 180 − ∝


∝'= arctan∝ ≈ 16, 22


∝= 163, 78

$\overset{\overline{}}{r}$1 = 10$\overset{\overline{}}{i}$ $\overset{\overline{}}{P}$1 = 4,386$\overset{\overline{}}{i}$ + 4,092$\overset{\overline{}}{j}$

$\overset{\overline{}}{r}$2 = 9 $\overset{\overline{}}{i}$ + 7$\overset{\overline{}}{j}$ $\overset{\overline{}}{P}$2 = -7$\overset{\overline{}}{i}$ + 3,88$\overset{\overline{}}{j}$

$\overset{\overline{}}{r}$3 = 12 $\overset{\overline{}}{i}$ + 3$\overset{\overline{}}{j}$ $\overset{\overline{}}{P}$3 = -3,83$\overset{\overline{}}{i}$ – 3,215$\overset{\overline{}}{j}$

$\overset{\overline{}}{r}$4 = 4$\overset{\overline{}}{j}$ $\overset{\overline{}}{P}$4 = 2$\overset{\overline{}}{i}$ – 3,464$\overset{\overline{}}{j}$


$${\overset{\overline{}}{M}}_{O} = \sum_{i = 1}^{4}{\overset{\overline{}}{r_{i}}\text{\ x}}\overset{\overline{}}{P_{i}}$$


$${\overset{\overline{}}{M}}_{O} = \left| \begin{matrix} \overset{\overline{}}{i} & \overset{\overline{}}{j} & \overset{\overline{}}{k} \\ 10 & 0 & 0 \\ 4,386 & 4,092 & 0 \\ \end{matrix} \right| + \ \left| \begin{matrix} \overset{\overline{}}{i} & \overset{\overline{}}{j} & \overset{\overline{}}{k} \\ 9 & 7 & 0 \\ - 7 & 3,88 & 0 \\ \end{matrix} \right| + \ \left| \begin{matrix} \overset{\overline{}}{i} & \overset{\overline{}}{j} & \overset{\overline{}}{k} \\ 12 & 3 & 0 \\ - 3,83 & - 3,215 & 0 \\ \end{matrix} \right| + \ \left| \begin{matrix} \overset{\overline{}}{i} & \overset{\overline{}}{j} & \overset{\overline{}}{k} \\ 0 & 4 & 0 \\ 2 & - 3,464 & 0 \\ \end{matrix} \right| =$$


$$= \left( 40,92 + 83,92 - 27,09 - 8 \right)\ \overset{\overline{}}{k} = 89,75\overset{\overline{}}{\text{\ k}}$$

  1. Metoda ze szkicu:


$$\overset{\overline{}}{W} = \text{Wx}\overset{\overline{}}{i} + \text{Wy}\overset{\overline{}}{j}$$


$$W_{x} = \pm \sum_{i = 1}^{4}{P_{i}*\cos{\propto '}_{i}}$$


$$W_{y} = \pm \sum_{i = 1}^{4}{P_{i}*\sin{\alpha'}_{i}}$$


Wx = 6 * 0, 731 − 8 * 0, 875 − 5 * 0, 766 + 4 * 0, 5 = 4, 386 − 7 − 3, 83 + 2 = −4, 444[kN]


Wy = 6 * 0, 682 + 8 * 0, 485 − 5 * 0, 643 − 4 * 0, 866 = 4, 092 + 3, 88 − 3, 215 − 3, 464 = 1, 293[kN]

$\overset{\overline{}}{\text{W\ }}$= $- 4,444\overset{\overline{}}{i}$ + $1,293\overset{\overline{}}{j}$


$${\overset{\overline{}}{M}}_{O} = \pm \sum_{i = 1}^{4}{P_{i}*}c_{i}$$


$${\overset{\overline{}}{M}}_{O} = 10*4,092 + 7*7 + 9*3,88 + 3*3,83 - 12*3,215 - 4*2 = 89,75\ \lbrack kNm\rbrack$$


$$M_{O} = W*c \rightarrow c = \left| \frac{M_{O}}{W} \right| = \left| \frac{89,75}{4,628} \right| = 19,393\ \lbrack m\rbrack$$


$$X_{W} = \frac{M_{O}}{W_{y}} = \frac{89,75}{1,293} = 64,412\ \lbrack m\rbrack$$


$$Y_{W} = - \frac{M_{O}}{W_{x}} = - \frac{89,75}{- 4,444} = 20,196\ \lbrack m\rbrack$$

Plan sił 0,5 cm1 m Wielobok sił 0,5 cm1 kN

Zadanie 5

Dane:

Siła P1 P2 P3 P4
Moduł [kN] 6 8 5 4
Kąt kierunkowy [°] 43 151 220 300
cos i 0,731 -0,875 -0,766 0,5
sin i 0,682 0,485 -0,643 -0,866
Kąt ostry [°] 43 29 40 60
cos i 0,731 0,875 0,766 0,5
Sin i 0,682 0,485 0,643 0,866

Metoda ze szkicu:

$\operatorname{}\frac{3}{3} = 45\ \ \ \ \ $ =0, 707 =0, 707

  1. $\sum_{}^{}x = 0$

  2. $\sum_{}^{}y = 0$

  3. $\sum_{}^{}M_{O} = 0$


$$\left\{ \begin{matrix} P_{1x} - P_{2x} - P_{3x} + P_{4x} - R_{B} + R_{\text{Cx}} = 0000000000000000000000000000000000000000000000000000000 \\ P_{1y} + P_{2y} - P_{3y} - P_{4y} + R_{A} + R_{\text{Cy}} = 000000000000000000000000000000000000000000000000000000 \\ P_{1y}*10 + P_{2x}*7 + P_{2y}*9 + P_{3x}*3 - P_{3y}*12 - P_{4x}*4 + R_{A}*2 + R_{B}*7 - R_{\text{Cx}}*4 = 000000000000000 \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} 6*0,731 - 8*0,875 - 5*0,766 + 4*0,5 - R_{B} + {0,707R}_{C} = 000000000000000000000000000 \\ 6*0,682 + 8*0,485 - 5*0,643 - 4*0,866 + R_{A} + {0,707R}_{C} = 0000000000000000000000000 \\ 4,092*10 + 7*7 + 3,88*9 + 3,83*3 - 3,215*12 - 2*4 + {2R}_{A} + {7R}_{B} - {2,828R}_{C} = 0000000 \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} - R_{B} + 0,707R_{C} = 4,44400000000000 \\ {- 2R}_{A} - 1,414R_{C} = 2,5860000000000 \\ 2R_{A} + 7R_{B} - {2,828R}_{C} = - 89,750000 \\ \end{matrix}00 \right.\ $$

0, 707RC = −56, 056 → RC = −79, 287[kN]


RB − 56, 056 = 4, 444 → RB = −60, 5 [kN]


−2RA + 112, 112 = 2, 586 → RA = 54, 763 [kN]

Oddziaływania w więziach:

 RA = 54, 763 [kN]

RB i RC ma znak ujemny oznacza to, że należy zmienić zwrot reakcji.

  1. $\sum_{}^{}x = 0$

  2. $\sum_{}^{}y = 0$

  3. $\sum_{}^{}M_{P} = 0$


$$\left\{ \begin{matrix} P_{1x} - P_{2x} - P_{3x} + P_{4x} + R_{B} - R_{\text{Cx}} = 0000000000000000000000000000000000000000000000000000000 \\ P_{1y} + P_{2y} - P_{3y} - P_{4y} - R_{A} + R_{\text{Cy}} = 000000000000000000000000000000000000000000000000000000 \\ {- P}_{1x}*2 + P_{2x}*7 - P_{2y}*3 + P_{3x}*3 - P_{4x}*4 + P_{4y}*12 - R_{A}*10 - R_{B}*7 + R_{\text{Cx}}*4 + R_{\text{Cy}}*12 = 00000 \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} 6*0,731 - 8*0,875 - 5*0,766 + 4*0,5 + R_{B} - {0,707R}_{C} = 00000000000000000000000000000000 \\ 6*0,682 + 8*0,485 - 5*0,643 - 4*0,866 + R_{A} - {0,707R}_{C} = 000000000000000000000000000000 \\ - 2*4,092 + 7*7 - 3*3,88 + 3,83*3 - 2*4 + 12*3,464 - 10R_{A} - 7R_{B} + 2,828R_{C} + 8,484R_{C} = 0 \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} 74,234 - 10R_{A} - 7R_{B} + 11,312R_{C} = 0 \\ - 31,108 + {7R}_{B} - 4,949R_{C} = 00000000 \\ 12,93 + 10R_{A} - 7,07R_{C} = 000000000 \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} 0,707R_{C} = 56,056 \rightarrow R_{C} = 79,287\ \lbrack kN\rbrack 0000000000000000000000000000000000000000000000000000000000000 \\ {7R}_{B} = 423,499 \rightarrow R_{B} = 60,5\ \left\lbrack \text{kN} \right\rbrack 00000000000000000000000000000000000000000000000000000000000000000 \\ R_{A} = 54,763\ \lbrack kN\rbrack 00000000000000000000000000000000000000000000000000000000000000000000000000000 \\ \end{matrix} \right.\ $$

ODPOWIEDŹ:

Oddziaływania w więziach:

 RA = 54, 763 [kN]
  1. $\sum_{}^{}M_{A} = 0$

  2. $\sum_{}^{}M_{B} = 0$

  3. $\sum_{}^{}M_{C} = 0$


$$\left\{ \begin{matrix} P_{1x}*6 + P_{1y}*8 + P_{2x}*P_{2y}*7 - P_{3x}*3 - P_{3y}*10 + P_{4x}*2 + P_{4y}*2 + R_{B} = 000000000 \\ P_{1x}*7 + P_{1y}*7 + P_{2y}*6 - P_{3x}*4 - P_{3y}*9 + P_{4x}*3 + P_{4y}*3 - R_{A} = 00000000000000 \\ P_{1x}*7 + P_{1y}*8 + P_{2y}*7 - P_{3x}* + 4 - P_{3y}*10 + P_{4x}*3 + P_{4y}*2 - R_{\text{Cx}}*3 + R_{\text{Cy}}*2 = 0 \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} 4,386*6 + 4,092*8 + 7 + 3,88*7 - 3,83*3 - 3,215*10 + 2*2 + 3,464*2 + R_{B} = 0 \rightarrow R_{B} = 60,50 \\ 4,386*7 + 4,092*7 + 3,88*6 - 3,83*4 - 3,215*9 + 2*3 + 3,464*3 - R_{A} = 0 \rightarrow R_{A} = 54,763000 \\ 4,386*7 + 4,092*8 + 3,88*7 - 3,83*4 - 3,215*10 + 2*3 + 3,464*2 - 0,707 = 0 \rightarrow R_{C} = 79,287 \\ \end{matrix} \right.\ $$

$\sum_{}^{}x = 0$


P1x − P2x − P3x + P4x + RB − RCx = 0


4, 386 − 7 − 3, 83 + 2 ∓ 60, 5 − 79, 287 * 0, 707 = 0 → 0 = 0

ODPOWIEDŹ:

Oddziaływania w więziach:

 RA = 54, 763 [kN]

Plan sił 0,25 cm1 m Wielobok sił 0,25 cm1 kN

RA = 54,5 [kN]

RB = 60 [kN]

RC = 79 [kN]


Wyszukiwarka

Podobne podstrony:
LU 2010 2011 Praca kontrolna nr 3 z jezyka polskiego
Praca kontrolna nr 2I id 382664 Nieznany
TABULACJA-praca kontrolna nr 1, Informatyka, Informatyka semestr I, 5.Oprogramowanie Biurowe
Praca kontrolna nr 1
Technologia Prac ?unkowych I Praca Kontrolna nr 1 KP (Naprawiony) wer 5
Technologia Prac ?unkowych I Praca Kontrolna nr 2 PK wer 2 pop
LU 2010-2011 Praca kontrolna nr 3 z jezyka polskiego
Praca kontrolna nr2 Mechanika techniczna MM
PRACA KONTROLNA NR 2 Z BIOLOGII SEMESTR II
Praca kontrolna nr 1
LU 2010 2011 Praca kontrolna nr 3 z jezyka polskiego
Praca kontrolna nr 2I id 382664 Nieznany
PISMO praca kontrolna nr 1
Kolorowe czasopismo praca kontrolna nr 2
DYPLOM praca kontrolna nr 1
Profesja,Sem II,Praca kontrolna nr 2 1
Zadanie 3 Profesja,Sem II,Praca kontrolna nr 2

więcej podobnych podstron