MASZYNOWA OBRÓBKA SKRAWANIEM
I. OGÓLNE ZASADY OBRÓBKI SKRAWANIEM
Obróbka skrawaniem polega na oddzielaniu od obrabianej bryły zbędnych warstw materiału w postaci wiórów za pomocą narzędzia skrawającego — w celu uzyskania przedmiotu o pożądanym kształcie, wymiarach i odpowiedniej jakości powierzchni.
Obróbka skrawaniem może być wykonywana ręcznie lub maszynowo. Obróbka maszynowa wykonywana jest na odpowiednich maszynach roboczych, nazywanych obrabiarkami do skrawania metali.
W zależności od rodzaju obrabiarki i narzędzia zastosowanego do obróbki skrawaniem rozróżnia się m. in. sześć podstawowych sposobów obróbki skrawaniem, a mianowicie: toczenie, struganie, wiercenie, frezowanie, przeciąganie, szlifowanie.
II. TOCZENIE
1. Zasada i odmiany obróbki toczeniem
Zasada obróbki toczeniem
Podczas obróbki skrawaniem występuje ruch roboczy i posuwowy. Podczas toczenia ruch roboczy obrotowy wykonuje przedmiot, zaś ruch posuwowy — narzędzie.
Odmiany obróbki toczeniem
W zależności od wzajemnych ruchów narzędzia i obrabianego przedmiotu rozróżnia się toczenie wzdłużne i poprzeczne (rys. 1).
Rys. 1. Rodzaje toczenia a) wzdłużne b) poprzeczne
Toczone mogą być zasadniczo powierzchnie obrotowe — zarówno zewnętrzne (przy toczeniu zewnętrznym), jak wewnętrzne (przy toczeniu wewnętrznym). Mogą to być powierzchnie o tworzącej prostoliniowej (walcowe lub stożkowe) lub krzywoliniowej (kuliste, jajowate itp.). Toczeniem poprzecznym można obrabiać również płaszczyzny.
Toczone mogą być również gwinty i ślimaki.
Siły skrawania i ich skutki
Siły występujące podczas toczenia (rys. 2) dadzą się podzielić na siły składowe
Rys. 2. Siły składowe działające na nóż tokarski.
— siłę skrawania (opór skrawania) Fs, działającą wzdłuż wektora prędkości skrawania,
— siłę posuwową (opór posuwu) Fp, działającą wzdłuż posuwu,
— siłę odpychającą (opór odpychania, siła odporowa) Fo, prostopadłą do posuwu.
Siły te z jednej strony muszą być przezwyciężone przez odpowiednio skonstruowane mechanizmy tokarki, z drugiej strony zaś powodują uginanie przedmiotu i narzędzia.
Wielkość tych sił składowych pozostaje do siebie w ściśle określonym stosunku.
Największą wartość liczbową przybiera siła Fs, której wielkość jest uzależniona:
— od rodzaju materiału skrawanego i jego wytrzymałości lub twardości,
— od grubości warstwy skrawanej
— od wielkości posuwu
— od geometrycznego kształtu ostrza noża, a głównie od kąta przystawienia oraz od kąta natarcia.
1. Tokarki
Rozróżniamy następujące rodzaje tokarek:
1) Tokarki pociągowe, o poziomej osi wrzeciona roboczego (rys. 3), zaopatrzone w wałek pociągowy i śrubę pociągową (tokarki uniwersalne) lub tylko w wałek pociągowy (tokarki produkcyjne).
Rys. 3 . Uniwersalna tokarka kłowa:
1 — silnik, 2 — przekładnia pasowa, 3 — skrzynka posuwów, 4 — wrzeciennik, 5 — sanie narzędziowe, 6 — imak nożowy, 7 — sanie poprzeczne, 8 — konik, 9 — wałek pociągowy, 10 — obrotnica, 11 — skrzynka suportowa, 11 — śruba pociągowa.
W tokarkach uniwersalnych śruba pociągowa służy do nacinania gwintów i ślimaków. Stosuje się je w produkcji jednostkowej lub małoseryjnej.
Tokarki produkcyjne mają uproszczoną budowę, a wskutek tego są tańsze. Znajdują zastosowanie przy produkcji seryjnej.
2) Tokarki tarczowe służą do obróbki przedmiotów płaskich o dużych średnicach. Mają one poziomą oś wrzeciona roboczego z dużą tarczą tokarską (rys. 4).
Rys. 4. Tokarka tarczowa; 1 — wrzeciennik, 2 — tarcza tokarska, 3 — sanie poprzeczne, 4 — sanie wzdłużne, 5 — suport narzędziowy.
3) Tokarki karuzelowe mają pionową oś obrotu wrzeciona roboczego (rys. 29) zakończonego dużą tarczą zwaną stołem. Służą one do obróbki dużych przedmiotów o małej długości. Zamocowywanie ciężkich przedmiotów na tych tokarkach jest łatwiejsze i bezpieczniejsze aniżeli na tokarkach tarczowych.
Rys. 5. Tokarka karuzelowa; 1 — stół obrotowy, 2 głowica rewolwerowa, 3 — suport narzędziowy, 4 — belka poprzeczna, 5 — suport poprzeczny, 6 — imak czteronożowy
4) Tokarki rewolwerowe zwane również rewolwerówkami, mają głowice rewolwerowe służące do szybkiej zmiany pozycji narzędzi skrawających. Narzędzia są umieszczone w głowicy rewolwerowej i na suporcie poprzecznym w imaku przednim i tylnym. Dzięki takiemu rozmieszczeniu narzędzi można wykonać szybko wiele zabiegów bez konieczności wymiany narzędzi w imakach.
5) Tokarki półautomatyczne (zwane również półautomatami tokarskimi) mogą być zbudowane jak tokarki kłowe (rys. 6) o dwóch suportach: przednim (z imakiem wielonożowym o ruchu automatycznym wzdłuż osi przedmiotu obrabianego) i tylnym (z imakiem wielonożowym o ruchu poprzecznym). Tokarki półautomatyczne różnią się tym od innych tokarek, że tokarz jest potrzebny jedynie do zamocowania przedmiotu, a pozostałe czynności są wykonywane automatycznie. Po obrobieniu przedmiotu obrabiarka jest unieruchamiana samoczynnie. W ten sposób tokarz może obsługiwać kilka tokarek.
Rys. 6. Obróbka wałka stopniowanego na półautomacie typu tokarki kłowej (wielonożówce); 1 — suport podłużny przedni, 2 — suport poprzeczny tylny, 3 — przedmiot obrabiany, 4 — kieł konika
6) Tokarki automatyczne (zwane również automatami tokarskimi) wykonują samoczynnie (po odpowiednim ustawieniu mechanizmu sterującego, np. krzywek) cały cykl obróbki przedmiotu wraz z jego zamocowaniem i odmontowaniem.
7) Tokarki ze sterowaniem numerycznym CNC, do obróbki wg programu dokładnych przedmiotów o złożonych kształtach.
8) Specjalne i branżowe, do wykonywania specjalnych zadań obróbkowych.
Wybór odpowiedniego rodzaju tokarki do danej produkcji zależy przede wszystkim od wielkości produkcji. Im większa jest produkcja, tym stosuje się bardziej uproszczone tokarki specjalistyczne, albo tokarki automatyczne lub tokarki ze sterowaniem numerycznym.
I. STRUGANIE
1. Charakterystyka strugania
Struganie jest rodzajem obróbki skrawaniem, polegającym na usuwaniu naddatku przez obróbkę ruchem prostoliniowym za pomocą jednoostrzowego narzędzia. Ruch roboczy w struganiu jest przerywany. Po okresie pracy następuje okres jałowy — powrotu narzędzia do pozycji wyjściowej
Ze względu na kierunek ruchu roboczego rozróżnia się trzy rodzaje procesów strugania. Są to: struganie poprzeczne, struganie wzdłużne i struganie pionowe, czyli dłutowanie.
Struganie poprzeczne i wzdłużne odbywa się na maszynach zwanych strugarkami, a struganie pionowe — na dłutownicach.
Podczas strugania poprzecznego nóż wykonuje ruch roboczy, a przedmiot przesuwa się skokowo w kierunku poprzecznym do tego ruchu.
Podczas strugania wzdłużnego przedmiot przesuwa się ruchem roboczym, a nóż strugarki wykonuje ruch posuwowy w kierunku poprzecznym do ruchu roboczego.
Podczas strugania pionowego, czyli dłutowania, narzędzie wykonuje ruch roboczy w kierunku pionowym, a ruch posuwowy wykonuje przedmiot umieszczony na stole dłutownicy.
Do stali o małej zawartości węgla stosuje się szybkość skrawania 7 - 50 m/min, a do stali o większej zawartości węgla — do 35 m/min. Najczęściej podczas skrawania stosuje się posuwy nieprzekraczające 2 mm na jeden skok, a głębokość skrawania 1 - 10 mm z wyjątkiem materiałów miękkich i plastycznych, dla których należy przyjmować głębokość skrawania do 20 mm.
Szybkość ruchu jałowego jest w strugarkach znacznie większa niż ruchu roboczego. Ma to na celu skrócenie czasu przeznaczonego na powrót noża do pozycji wyjściowej.
2. Strugarki poprzeczne - budowa
Strugarki poprzeczne przeznaczone są do obróbki niewielkich przedmiotów. Zasada pracy strugarki po porzecznej jest następująca (rys. 7). Nóż 1 wykonuje ruch prostoliniowy posuwisto—zwrotny. Podczas ruchu roboczego nóż zdejmuje warstwę skrawaną o przekroju p x g. Pod koniec ruchu powrotnego stół strugarki wraz z przedmiotem obrabianym wykonuje posuw w kierunku prostopadłym do kierunku roboczego ruchu noża.
Rys. 7. Schemat strugania na strugarce poprzecznej
Na rys. 8 przedstawiono strugarkę typ PAA 60 polskiej produkcji. Obrabiarka ta przeznaczona jest do zgrubnej i dokładnej obróbki przedmiotów, których długość struganych powierzchni nie przekracza 600 mm.
Podczas strugania suwak 3 wykonuje posuwisto-zwrotny ruch roboczy w kierunku wzdłużnym (w kierunku strzałki I — skok roboczy, w kierunku II — skok jałowy). Po każdym skoku jałowym stół 4 wraz z saniami poprzecznymi 10 wykonuje posuw w kierunku poprzecznym (strzałki III, IV). Strugarka PAA 60 ma również mechaniczny posuw pionowy (strzałki V, VI).
Rys. 8. Strugarka poprzeczna typ PAA 60
1 — korpus, 2 — skrzynka przekładniowa, 3 — suwak, 4 — stół, 5 — teleskopowy drążek mechanizmu posuwowego, 6 — podstawa, 7 — wspornik silnika elektrycznego, 8 — podpórka, 9 — silnik, 10 — sanie poprzeczne, 11 — sanie pionowe, 12 — suport, 13 — imak.
3. Strugarki wzdłużne - budowa
Strugarki wzdłużne przeznaczone są do obróbki płaszczyzn o dużych wymiarach (długość strugania — do 12 000 mm i więcej, szerokość strugania — do 6000 mm). Ekonomicznie pracują przy struganiu płaszczyzn wąskich i długich.
Na rys. 9 przedstawiono podstawowy schemat pracy strugarek wzdłużnych. Stół strugarki 6 wraz z przedmiotem obrabianym 5 wykonuje ruch posuwisto-zwrotny. Podczas ruchu roboczego w kierunku strzałki 1 zdejmowana jest warstwa skrawana głębokości g i szerokości p na całej długości powierzchni obrabianej. Po zdjęciu warstwy nóż 7 zamocowany na suporcie 2wraca tą samą drogą wykonując ruch powrotny (jałowy) w kierunku strzałki 1’ Ponieważ w czasie ruchu powrotnego nóż nie pracuje, szybkość tego ruchu jest większa od szybkości ruchu roboczego. Pod koniec ruchu powrotnego, gdy nóż znajduje się poza materiałem obrabianym następuje przesunięcie sań wzdłużnych 4 suportu po belce poprzecznej 3 o wartość p posuwu. W następnym ruchu roboczym materiału obrabianego zdejmowana jest następna warstwa skrawana. Posuwisto-zwrotne ruchy materiału i ruch posuwowy suportu powtarzają się samoczynnie aż do momentu zdjęcia określonej warstwy materiału (naddatku na obróbkę).
Rys. 9. Schemat pracy strugarki wzdłużnej.
Rys. 10. Ogólny schemat budowy dwustojakowej strugarki wzdłużnej
Na rys. 10 przedstawiono ogólny schemat budowy strugarki wzdłużnej. Strugarka ma łoże 1. Z obu stron łoża zamocowane są dwa stojaki 2 połączone u góry belką poprzeczną 3. Łoże, stojaki i belka poprzeczna stanowią układ zamknięty o znacznej sztywności. Strugarka napędzana jest od silnika 4. Za pomocą przekładni pasowej napęd przenoszony jest z silnika na mechanizm stołu. Stół 8 wraz z przedmiotem obrabianym 9 przemieszcza się po łożu 1 o sztywnej budowie. U góry stół ma rowki T-owe służące do zamocowania przedmiotów obrabianych. Pod spodem stołu przytwierdzona jest zębatka mechanizmu napędu stołu.
Na pionowych prowadnicach stojaków 2 z obu stron stołu znajdują się dwa suporty boczne 7, które mogą pracować jednocześnie. Po tych prowadnicach może przesuwać się belka poprzeczna 5 z dwoma suportami (głównymi) 6. Oba suporty mogą być przesuwane wzdłuż belki 5 niezależnie jeden od drugiego. Stół ma z boku rowek T-owy, w którym zamocowane są dwa zderzaki 10. Zderzaki te służą do regulowania długości przesuwu stołu. Zderzaki 10 podczas posuwisto-zwrotnego ruchu stołu zderzają się z dźwignią 11 służącą do przełączania mechanizmu napędu stołu.
Na rys. 10 przedstawiono schemat budowy jednostojakowej strugarki wzdłużnej. Strugarka ta różni się od strugarki dwustojakowej tym, że przesuwna belka poprzeczna 1 ma zarys wspornikowy i wsparta jest tylko na jednym stojaku 2. Na belce 1 znajduje się jeden lub dwa suporty. Nie zależnie od tego na stojaku znajduje się dodatkowy suport boczny.
Rys. 10. Ogólny schemat budowy jednostojakowej strugarki wzdłużnej
Strugarki wzdłużne jednostojakowe są mniej sztywne od strugarek wzdłużnych dwustojakowych. Mają one bowiem budowę otwartą, dzięki której można obrabiać przedmioty z występami wychodzącymi znacznie poza szerokość stołu.
II. WIERCENIE
1. Zasada wiercenia, rozwiercania i pogłębiania
Podczas obróbki otworu na wiertarkach narzędzie wykonuje zarówno ruch roboczy obrotowy jak też posuwowy. Wiercenie może być przeprowadzane na wiertarkach, tokarkach (ruch obrotowy wykonuje przedmiot, a wiertło tylko posuw) lub frezarkach.
Wiertarka jest obrabiarką mało dokładną i z tego powodu wiercone otwory wykazują znaczne rozbicie (tj. powiększenie otworu do średnicy większej od średnicy wiertła). Wielkość rozbicia jest tym większa, im większe jest bicie wrzeciona, im większa jest średnica wiertła oraz im miększy jest obrabiany materiał. Dlatego otwory, od których wymagamy dużej dokładności są rozwiercane zgrubnie i wykańczające (rys. 11).
Rys. 11. Kolejne zabiegi przy obróbce dokładnych otworów: a) wiercenie, b) rozwiercanie zgrubne, c) rozwiercanie wykańczające
2. Wiertarki
Do najważniejszych rodzajów wiertarek należą:
1) Wiertarki stołowe, których nazwa pochodzi od tego, że stawia się je na stole; służą one do obróbki otworów o małych średnicach (do 16 mm).
2) Wiertarki stojakowe, do których należą wiertarki kadłubowe i słupowe (rys. 12). Różnica między tymi dwoma wiertarkami polega jedynie na sztywności kolumny, na której są osadzone wrzecienniki (wraz ze skrzynką posuwową) i stoły.
Rys. 12. Wiertarka kadłubowa: 1 — stół, 2 — wrzeciono, 3 — wrzeciennik, 4 — silnik, 5 — kolumna (kadłub)
3) Wiertarki promieniowe (rys. 13), w których wrzeciennik może swobodnie przesuwać się wzdłuż ramienia, a ramię może się przesuwać i obracać względem słupa. Wrzeciennik może być unieruchomiony na ramieniu, a ramię względem słupa. Jest to potrzebne w tym celu, aby po ustawieniu wrzeciona w ściśle określonym miejscu, położenie jego nie uległo zmianie podczas wiercenia lub rozwiercania, gdyż doprowadziłoby to do zniszczenia narzędzia i przedmiotu obrabianego.
Rys. 13. Wiertarka promieniowa: 1 — słup, 2 — silnik, 3 — wrzeciennik, 4 — ramię, 5 — wrzeciono
4) Wiertarki współrzędnościowe służące do obróbki otworów w przyrządach, od których wymaga się dużej dokładności wymiarów, kształtów i rozstawienia otworów.
III. Frezowanie
1. Charakterystyka frezowania
Frezowanie jest obróbką skrawaniem narzędziami wieloostrzowymi obrotowymi, zwanymi frezami.
Zależnie od kierunku ruchu posuwowego przedmiotu względem kierunku wektora prędkości freza, frezowanie obwodowe (frez skrawa ostrzarni rozmieszczonymi na obwodzie) może być:
• przeciwbieżne, wówczas kierunki prędkości stycznej freza i przedmiotu są przeciwne,
• współbieżne, wówczas kierunki prędkości stycznej freza i posuwu przedmiotu są takie same (rys. 14).
Rys. 14. Rodzaje frezowania
f — posuw, Fa — siła styczna skrawania danego zęba, FfN, Ff — składowe siły stycznej
2. Frezy
Frezy są to narzędzia wieloostrzowe, obrotowe, które służą do obróbki płaszczyzn, rowków i powierzchni kształtowych na obrabiarkach zwanych frezarkami. Pod względem zastosowania dzieli się je na frezy ogólnego przeznaczenia i specjalne.
Ze względu na rodzaj powierzchni, na której znajdują się ostrza, wyróżnia się frezy walcowe, czołowe i walcowo-czołowe (rys. 15). Frezy walcowe mogą być wykonane z zębami prostymi lub śrubowymi. Ze względu na sposób mocowania rozróżnia się frezy nasadzane i trzpieniowe z chwytem stożkowym lub walcowym.
Rys. 15. Rodzaje frezów: a) walcowy, b) walcowo-czołowy, c) kształtowy, d) głowica frezarska (czołowa)
3. Frezarki
Frezarki, w zależności od możliwości obróbkowych, dzieli się na: frezarki ogólnego przeznaczenia, specjalizowane i specjalne. Ze względu na konstrukcję układu nośnego wyróżnia się frezarki: wspornikowe — pionowe i poziome (rys. 16), bezwspornikowe — pionowe, wzdłużne i karuzelowe, narzędziowe, kopiarki i frezarki do gwintów.
Rys. 16. Ogólny wygląd frezarki wspornikowej poziomej: 1 — korpus, 2 — wspornik, 3 — Sanie krzyżowe, 4 — stół, 5 skrzynka prędkości i posuwów, 6 — drzwiczki, za którymi znajduje się silnik elektryczny, 7 — wrzeciono, 8 — belka wspornikowa (przesuwna), 9 — podtrzymka środkowa, 10 — podtrzymka skrajna, 12 — listwy usztywniające
IV. Przeciąganie i przepychanie
Przeciąganie i przepychanie jest rodzajem obróbki wykańczającej skrawaniem, charakteryzującym się prostoliniowym ruchem głównym. Ruch główny może być wykonywany przez narzędzie (przeciągacz lub przepychacz), albo przez przedmiot obrabiany.
Przeciąganie odbywa się na przeciągarkach, natomiast przepychanie może odbywać się na prasach pionowych ręcznych lub hydraulicznych (rys. 17).
Celem przeciągania jest uzyskanie dokładnych powierzchni kształtowych zewnętrznych i wewnętrznych. Przepychanie stosuje się tylko do kształtowania powierzchni wewnętrznych.
Rys. 17. Zasada przeciągania i przepychania: a) przeciąganie, b) przepychanie
V. Szlifowanie
Proces szlifowania jest zaliczany do obróbki skrawaniem, lecz warunki, w jakich przebiega, różnią się od typowych warunków skrawania. W głównej mierze odnosi się to do kształtu ostrzy ściernicy, który zależy od przypadkowego kształtu ziarn materiału ściernego.
Rys. 18. Budowa ściernicy
Ze względu na małe wymiary ziarn ściernych ściernicy grubość g warstwy skrawanej jest zwykle niewielka. Ściernica o kształcie tarczy obracającej się dokoła swej osi wykonuje ruch roboczy. Szybkość tego ruchu wynosi zazwyczaj 30÷50 m/s; jest więc znacznie większa od szybkości skrawania innymi metodami.
Oprócz ruchu roboczego ściernica wykonuje również posuw wgłębębny, równy grubości warstwy skrawanej g. Posuw ten wykonuje tarcza po całkowitym usunięciu warstwy poprzedniej. Wartość tego posuwu jest zależna od rodzaju szlifowania od kilku milimetrów do 0,005÷0,01 mm.
Rys. 19. Szlifowanie.
Podstawowym parametrem określającym rodzaje materiałów ściernych jest wielkość ziarna. W zależności od ziarnistości rozróżnia się ziarna ścierne (wielkość ziarn określa się liczbami ziarnistości od 8 do 220) oraz mikroziarna ścierne (mikroziarna oznacza się symbolem F i odpowiednim numerem).
Materiały ścierne mogą być używane w postaci proszków lub wyrobów ściernych.
Wyroby ścierne dzieli się na:
1. ściernice, pilniki, segmenty ścierne,
2. papiery i płótna ścierne,
3. pasty ścierne.