PROGRAM:
clc;
clear;
N=4;
x=[1 2 3 4 5];
y=[2 1 5 6 1];
z=2.5;
L=0;
for i=0:N
s=y(i+1);
for j=0:N
if j~=i
s=s*(z-x(j+1))/(x(i+1)-x(j+1));
end
end
L=L+s;
end
L
plot(x,y,z,L,'*r');
%zad11
p=polyfit(x,y,N);
p*24
%zad12
x2=[0 0.1 0.2 0.3 0.4 0.5 0.6]
y2=[2.9 2.8 2.7 2.3 2.1 2.1 1.7]
p2=polyfit(x2,y2,1);
p2
u=p2(1);
w=p2(2);
figure (2);
plot(x2,y2,x2,u*x2+w);
%zad13
x3=[20.5 32.7 51 73.2 95.7]
y3=[765 826 873 942 1032]
p3=polyfit(x3,y3,1)
figure(3);
plot(x3,y3,x3,p3(1)*x3+p3(2));
Wyniki:
%1.1:
x1=[0 0.1 0.2 0.3 0.4 0.5 0.6];
y1=[2.9 2.8 2.7 2.3 2.1 2.1 1.7];
a1=polyfit(x1,y1,1)
Wynik:
a1 = -2.0000 2.9714
%1.2:
x2=[20.5 32.7 51.0 73.2 95.7];
y2=[765 826 873 942 1032];
a2=polyfit(x2,y2,1)
Wynik:
a2 = 3.3949 702.1721
%1.3:
x3=[0 0.2 0.4 0.6 0.8 1.0];
y3=[1.026 0.768 0.648 0.401 0.272 0.193];
a3=polyfit(x3,y3,2)
Wynik:
a3 = 0.3835 -1.2263 1.0239
%1.4:
x4=[0 pi/6 pi/4 pi/3 pi/2];
y4=[0 1/2 sqrt(2)/2 sqrt(3)/2 1];
%a
[a4A,bA]=polyfit(x4,y4,2)
[y4A,delta1]=polyval(a4A,x4,bA)
sumadelta=sum(delta1)
Wynik:
a4A = -0.3346 1.1685 -0.0050
bA = R: [3x3 double] df: 2 normr: 0.0220
y4A = -0.0050 0.5151 0.7064 0.8517 1.0049
delta1 = 0.0217 0.0181 0.0183 0.0181 0.0217
sumadelta = 0.0978
%b
a4B=polyfit(x4,y4,4)
Wynik:
a4B = 0.0288 -0.2043 0.0214 0.9956 -0.0000
%c
k=0:1:16;
x4C=(k*pi)/32;
y4C=polyval(a4A,x4C);
a4C=polyfit(x4C,y4C,2)
Wynik:
a4C = -0.3346 1.1685 -0.0050
%3.1:
a=1;
b=1;
epsilon=0.0001;
x1=(b+a)/2;
n=0;
while (abs(b-a)>epsilon)
n=n+1
x=(a+b)/2
y=(x.^2)-2
ya=(a^2)-2
yb=(b^2)-2
if y~=0
if ya*y<0
b=x
yb=y
else
a=x
ya=y
end
else
break;
end
end
Uniwersytet Warmińsko – Mazurski
W Olsztynie
WYDZIAŁ NAUK TECHNICZNYCH
MECHATRONIKA
Algorytmy i metody numeryczne.
Wykonał:
Mateusz Gołębiewski
Gr III