$$T = PP = t + \frac{\left| N_{0} \right|}{P_{t + 1}}$$
$$PI = \frac{\text{PV}}{I_{0}}$$
$$NPV = \sum_{t = 0}^{n}\frac{\text{CF}_{t}}{\left( 1 + r \right)^{t}} - \sum_{t = 0}^{n}\frac{I_{t}}{\left( 1 + r \right)^{t}}$$
$$NPV = \sum_{t = 0}^{n}\frac{\text{CF}_{t}}{\left( 1 + r \right)^{t}} - I_{0}$$
$$IRR = k^{+} + \frac{\text{NPV}^{+}}{\text{NPV}^{+} - \text{NPV}^{-}}\ / \times 100\%$$
$$ARR = \frac{\frac{\left\lbrack \sum_{i = 1}^{n}\left( \text{CF}_{t} - Amort. \right) \right\rbrack}{n}}{I}$$
$$MIRR = \sqrt[n]{\frac{\sum_{t = 1}^{n}{\text{FOCF}_{t}\left( 1 + k \right)^{n - t}}}{\sum_{t = 0}^{n}\frac{\text{CFI}_{t}}{\left( 1 + k \right)^{t}}}} - 1$$
CF = Sp − K − T(Sp−K−AM)
$$WACC = \sum_{i = 1}^{n}{w_{i}K_{i}}$$
$$\text{BEP}_{\text{il}} = \frac{\text{KS}}{c_{j} - k_{j}}$$
BEPwart = BEPil × cj
|