ĆWICZENIE PROJEKTOWE NR 3
TEMAT:
DLA UKŁADU RAMOWEGO PODPARTEGO I OBCIĄŻONEGO JAK NA RYSUNKU
WYZNACZYĆ REAKCJE PODPÓR
I SPORZĄDZIĆ WYKRESY SIŁ WEWNĘTRZNYCH (N, T, M)
Magdalena Duszyńska
Gr II
Rok II
Semestr III
Rok Akad. 2010/2011
G=2 O=2 N=9 I=9
P = 25 kN M=25 kNm q=22 kN/m
∑MiBL = 0 → VA * 2 – P *4 – q * $\sqrt{8}$ * $\frac{\sqrt{8}}{2}$ - M = 0
VA = 106,5 KN
∑Pix = 0 → - HE + P – q * 2 + q * $\frac{2}{\sqrt{8}}$ * $\sqrt{8}$ = 0
HE = 25 KN
∑MicP = 0 → VE * 9 + HE * 9 – M = 0
VE = 22,222 KN
∑Piy = 0 → VA - VD + VE – P – q * $\frac{2}{\sqrt{8}}$ * $\sqrt{8}$ = 0
VD = 59,7 KN
∑MicL = 0 → - MD -25 + VA * 4 – q *2 * 1 – q * $\frac{2}{\sqrt{8}}$ * $\sqrt{8}$ * ($\frac{\sqrt{8}}{2}$ + 2) + q * $\frac{2}{\sqrt{8}}$ * $\sqrt{8}$ * ($\frac{\sqrt{8}}{2}$ + 2) = 0
MD = 357,00 KNm
SPRAWDZENIE:
∑MiP = 0 → VA * 1 + VD * 3 - VE * 12 + HE * 12 – 2 * M – P * 3 + P * 3 + q * 2 * 2 - MD = 0
0 = 0
X1 ϵ (0;9)
T(X) = 0 KN = T(0) = T(9)
N(X )= - VA = - 106,5 KN = N(0)= N(9 )
M(x) = 0 KNm = M(0) = M(9)
X2 ϵ (0;2)
T(X) =- 25 KN = T(0) = T(2)
N(X )= - VA = - 106,5 KN = N(0)= N(2 )
M(x) = - P * x
M(0) = 0 KNm
M(2) = - 50 KNm
X3 ϵ (0;$\ \sqrt{8}$ )
T(X) = VA * $\frac{2}{\sqrt{8}}$ - P * $\frac{2}{\sqrt{8}}$ - q * x
T(0) = 57,629 KN
T( 8 ) = - 4,596 KN
N(X )= - VA * $\frac{2}{\sqrt{8}}$ - P * $\frac{2}{\sqrt{8}}$
N(0)= N( 8 ) = - 92,98 KN
M(x) = VA * x * $\frac{2}{\sqrt{8}}$ - P * ( 2 + x * $\frac{2}{\sqrt{8}}$ ) – M – q * x * $\frac{x}{2}$
M(0) = - 75 KNm
M( 8 ) = 0 KNm
X4 ϵ (0; 2 )
T(X) = VA - q * $\frac{2}{\sqrt{8}}$ * $\sqrt{8}$
T(0) = T(2) = 62,5 KN
N(X )= - P - q * $\frac{2}{\sqrt{8}}$ * $\sqrt{8}$
N(0)= N( 8 ) = - 69,00 KN
M(x) = VA * (2 + x) - P * 4 – M – q * $\frac{2}{\sqrt{8}}$ * $\sqrt{8}$ * (1 + x) - q * $\frac{2}{\sqrt{8}}$ * $\sqrt{8}$ * 1
M(0) = 0 KNm
M( 2) = 125 KNm
X5 ϵ (0; 2 )
T(X) = P + q * $\frac{2}{\sqrt{8}}$ * $\sqrt{8}$
T(0) = T(2) = 69,00 KN
N(X )= VA - P - q * $\frac{2}{\sqrt{8}}$ * $\sqrt{8}$
N(0)= N( 8 ) = 37,5 KN
M(x) = VA * 4 - P *( 4 – x ) – M – q * $\frac{2}{\sqrt{8}}$ * $\sqrt{8}$ * (-1 + x) - q * $\frac{2}{\sqrt{8}}$ * $\sqrt{8}$ * 3
M(0) = 125 KNm
M( 2) = 263 KNm
X6 ϵ (0; 2 )
T(X) = P + q * $\frac{2}{\sqrt{8}}$ * $\sqrt{8}$ - q * x
T(0) = 69 KN
T(2) = 25 KN
N(X )= VA - P - q * $\frac{2}{\sqrt{8}}$ * $\sqrt{8}$
N(0)= N(2 ) = 37,5 KN
M(x) = VA * 4 - P *( 2 – x ) – M – q * $\frac{x}{2}$ * x - q * $\frac{2}{\sqrt{8}}$ * $\sqrt{8}$ * 3 + q * $\frac{2}{\sqrt{8}}$ * $\sqrt{8}$ * (1 + x)
M(0) = 263 KNm
M( 2) = 357 KNm
X7 ϵ (0; 9 )
T(X) = 0 KN = T(0) = T(9)
N(X )= VD = 59,7 KN = N(0)= N(2 )
M(x) = MD
M(0) = 357 KNm
M( 2) = 357 KNm
X8 ϵ (0;$\ 9\sqrt{2}$ )
T(X) = - VE * $\frac{9}{9\sqrt{2}}$ + HE * $\frac{9}{9\sqrt{2}}$
T(0) = T(9 2 ) = 1,98 KN
N(X )= - VE * $\frac{9}{9\sqrt{2}}$ - HE * $\frac{9}{9\sqrt{2}}$
N(0)= N(9 2 ) = 33,75 KN
M(x) = - VE * $\frac{9}{9\sqrt{2}}$ * x - HE * $\frac{9}{9\sqrt{2}}$ * x + 25
M(0) = 25 KNm
M( 9 2 ) = 0 KNm