V = ω * r ;; aT = ε * r ;; aN = ω2 * r ;; $a_{M}^{C} = \sqrt{a_{M}^{T2} + a_{M}^{N2}}$ ;; $J = \frac{M*r^{2}}{2}$ ;; $E_{k} = J*{\dot{\varphi}}^{2}$ ;;; $E_{p} = \frac{1}{2}k*x^{2}$ ;; $E_{D} = \frac{1}{2}b*{\dot{x}}^{2}$ ;; Ep = M * g * h ;;$\ E_{k} = \frac{1}{2}M*{\dot{h}}^{2}$ ;; $E_{k} = \frac{1}{2}M*{\dot{x}}^{2}$ ;; $\frac{d}{\text{dt}}\left( \frac{\partial Ek}{\partial\dot{x}} \right) - \frac{\partial Ek}{\partial x} + \frac{\partial Ep}{\partial x} + \frac{\partial ED}{\partial\dot{x}} = 0$;; T = μ * N; ;N = m * g ;;; G2 = μ * N1 = μ * M1 * G1
V = ω * r ;; aT = ε * r ;; aN = ω2 * r ;; $a_{M}^{C} = \sqrt{a_{M}^{T2} + a_{M}^{N2}}$ ;; $J = \frac{M*r^{2}}{2}$ ;; $E_{k} = J*{\dot{\varphi}}^{2}$ ;;; $E_{p} = \frac{1}{2}k*x^{2}$ ;; $E_{D} = \frac{1}{2}b*{\dot{x}}^{2}$ ;; Ep = M * g * h ;;$\ E_{k} = \frac{1}{2}M*{\dot{h}}^{2}$ ;; $E_{k} = \frac{1}{2}M*{\dot{x}}^{2}$ ;; $\frac{d}{\text{dt}}\left( \frac{\partial Ek}{\partial\dot{x}} \right) - \frac{\partial Ek}{\partial x} + \frac{\partial Ep}{\partial x} + \frac{\partial ED}{\partial\dot{x}} = 0$;; T = μ * N; ;N = m * g ;;; G2 = μ * N1 = μ * M1 * G1
V = ω * r ;; aT = ε * r ;; aN = ω2 * r ;; $a_{M}^{C} = \sqrt{a_{M}^{T2} + a_{M}^{N2}}$ ;; $J = \frac{M*r^{2}}{2}$ ;; $E_{k} = J*{\dot{\varphi}}^{2}$ ;;; $E_{p} = \frac{1}{2}k*x^{2}$ ;; $E_{D} = \frac{1}{2}b*{\dot{x}}^{2}$ ;; Ep = M * g * h ;;$\ E_{k} = \frac{1}{2}M*{\dot{h}}^{2}$ ;; $E_{k} = \frac{1}{2}M*{\dot{x}}^{2}$ ;; $\frac{d}{\text{dt}}\left( \frac{\partial Ek}{\partial\dot{x}} \right) - \frac{\partial Ek}{\partial x} + \frac{\partial Ep}{\partial x} + \frac{\partial ED}{\partial\dot{x}} = 0$;; T = μ * N; ;N = m * g ;;; G2 = μ * N1 = μ * M1 * G1
V = ω * r ;; aT = ε * r ;; aN = ω2 * r ;; $a_{M}^{C} = \sqrt{a_{M}^{T2} + a_{M}^{N2}}$ ;; $J = \frac{M*r^{2}}{2}$ ;; $E_{k} = J*{\dot{\varphi}}^{2}$ ;;; $E_{p} = \frac{1}{2}k*x^{2}$ ;; $E_{D} = \frac{1}{2}b*{\dot{x}}^{2}$ ;; Ep = M * g * h ;;$\ E_{k} = \frac{1}{2}M*{\dot{h}}^{2}$ ;; $E_{k} = \frac{1}{2}M*{\dot{x}}^{2}$ ;; $\frac{d}{\text{dt}}\left( \frac{\partial Ek}{\partial\dot{x}} \right) - \frac{\partial Ek}{\partial x} + \frac{\partial Ep}{\partial x} + \frac{\partial ED}{\partial\dot{x}} = 0$;; T = μ * N; ;N = m * g ;;; G2 = μ * N1 = μ * M1 * G1