STATYSTYKA MATEMATYCZNAW wielu rzeczywistych sytuacjach zebranie wszystkich potencjalnych danych nie jest mozliwe, a analizy dokonuje sie na podstawie odpowiednio zebranych danych czesciowych o badanym zjawisku. Taka analiza, wykorzystujaca metody rachunku prawdopodobienstwa, nosi miano Statystyki Matematycznej. POPULACJA GENERALNABadanie statystyczne dotyczy zawsze pewnej zbiorowosci, której elementami sa obiekty materialne lub zjawiska. W statystyce matematycznej badann zbiorowosć statystyczna nazywa sie populacja generalna lub zbiorowoscia generalna. CECHA STATYSTYCZNAElementy populacji generalnej moga mieć rózne własciwosci, które Podlegaja obserwacji, i które pozwalaja na rozróznianie elementów w populacji. Te własciwosci nazywa sie cechami statystycznymi lub krótko cechami. PRÓBA Podzbiór elementów populacji generalnej podlegajacych badaniu nazywa sie próba. Statystyka matematyczna zajmuje sie tylko badaniami czesciowymi, takim, w których dobór próby podlega pewnym obiektywnym regułom estymacja (szacowanie) nieznanych wartosci parametrów rozkładu cechy, - sprawdzanie (weryfikacja) hipotez dotyczacych wartosci parametrów rozkładu lub postaci samego rozkładu. ZMIENNA LOSOWA Zmienna losowa jest to taka zmienna, która w wyniku doswiadczenia przybiera jedna i tylko jedna wartosć ze zbioru tych wszystkich wartosci, jakie ta zmienna moze przyjać. Dystrybuanta zmiennej losowej X nazywa sie funkcje oznaczona przez F(x), okreslona F(x)=P(X<x) Okresla ona prawdopodobienstwo tego, ze zmienna losowa X przyjmuje jakakolwiek wartosć mniejsza od z góry przyjetej danej wartosci x. Rozkład Poissona Jezeli zmienne losowe 1, 2 n x x ,...,x maja rozkład dwumianowy o parametrach n i n Z rozkładu Poisson'a korzysta sie analogicznych przypadkach jak dla rozkładu dwumianowego, ale wówczas, gdy n jest dostatecznie duze (n>50) i p dostatecznie małe (p<0,1). Reguła trzech Jezeli X jest zmienna losowa ciagła o rozkładzie N(μ,σ) to zachodzi: P(μ − 3σ ≤ X ≤ μ + 3σ) = 0,9973 tzn. takie jest prawdopodobienstwo, ze zmienna losowa przyjmie takie wartosci, które róznia sie od wartosci oczekiwanej μ nie wiecej niz o +/- 3 odchylenia standardowe σ. ESTYMACJA PRZEDZIAŁOWA PARAMETRÓW Metoda estymacji przedziałowej to dokonanie szacunku parametru w postaci takiego przedziału (zwanego przedziałem ufnosci), który z duzym prawdopodobienstwem obejmuje prawdziwa wartoać parametru. Przedział ufnosci dla wariancji\ W zaleznosci od tego, czy próba jest mała czy duza, przedział ufnosci dla wariancji buduje sie odpowiednio w oparciu o rozkład χ2 (chi-kwadrat) beda o rozkład normalny. Weryfikacja (testowanie) hipotez statystycznych to drugi, obok estymacji, podstawowy rodzaj wnioskowania statystycznego. Hipoteza statystyczna to kazde przypuszczenie dotyczące wielkosci parametru rozkładu zmiennej losowej w populacji generalnej lub próbnej, albo tez postaci tego rozkładu, uzyskane na podstawie próby losowej. Typy zaleznosci: ♦ funkcyjna: zmiana wartosci jednej zmiennej powoduje cile okreslona zmiane drugiej zmiennej (jednej zmiennej X odpowiada tylko jedna wartosć drugiej zmiennej Y), np. pole kwadratu ♦ stochastyczna: ze zmiane jednej zmiennej zmienia sie rozkład prawdopodobienstwa drugiej zmiennej ROZKŁADY ZMIENNYCH LOSOWYCH CIaGŁYCH Rozkład normalny (Gaussa) Uznawany za najwazniejszy rozkład w teorii prawdopodobieństwa Gestosć prawdopodobienstwa zmiennej losowej o rozkładzie normalnym: Rozkład normalny standaryzowany Reguła trzech (sigm) Rozkład wykładniczy Rozkład chi-kwadrat 2 Rozkład (gamma) Rozkład t-Studenta Rozkład F-Snedecora
STATYSTYKA MATEMATYCZNAW wielu rzeczywistych sytuacjach zebranie wszystkich potencjalnych danych nie jest mozliwe, a analizy dokonuje sie na podstawie odpowiednio zebranych danych czesciowych o badanym zjawisku. Taka analiza, wykorzystujaca metody rachunku prawdopodobienstwa, nosi miano Statystyki Matematycznej. POPULACJA GENERALNABadanie statystyczne dotyczy zawsze pewnej zbiorowosci, której elementami sa obiekty materialne lub zjawiska. W statystyce matematycznej badann zbiorowosć statystyczna nazywa sie populacja generalna lub zbiorowoscia generalna. CECHA STATYSTYCZNAElementy populacji generalnej moga mieć rózne własciwosci, które Podlegaja obserwacji, i które pozwalaja na rozróznianie elementów w populacji. Te własciwosci nazywa sie cechami statystycznymi lub krótko cechami. PRÓBA Podzbiór elementów populacji generalnej podlegajacych badaniu nazywa sie próba. Statystyka matematyczna zajmuje sie tylko badaniami czesciowymi, takim, w których dobór próby podlega pewnym obiektywnym regułom estymacja (szacowanie) nieznanych wartosci parametrów rozkładu cechy, - sprawdzanie (weryfikacja) hipotez dotyczacych wartosci parametrów rozkładu lub postaci samego rozkładu. ZMIENNA LOSOWA Zmienna losowa jest to taka zmienna, która w wyniku doswiadczenia przybiera jedna i tylko jedna wartosć ze zbioru tych wszystkich wartosci, jakie ta zmienna moze przyjać. Dystrybuanta zmiennej losowej X nazywa sie funkcje oznaczona przez F(x), okreslona F(x)=P(X<x) Okresla ona prawdopodobienstwo tego, ze zmienna losowa X przyjmuje jakakolwiek wartosć mniejsza od z góry przyjetej danej wartosci x. Rozkład Poissona Jezeli zmienne losowe 1, 2 n x x ,...,x maja rozkład dwumianowy o parametrach n i n Z rozkładu Poisson'a korzysta sie analogicznych przypadkach jak dla rozkładu dwumianowego, ale wówczas, gdy n jest dostatecznie duze (n>50) i p dostatecznie małe (p<0,1). Reguła trzech Jezeli X jest zmienna losowa ciagła o rozkładzie N(μ,σ) to zachodzi: P(μ − 3σ ≤ X ≤ μ + 3σ) = 0,9973 tzn. takie jest prawdopodobienstwo, ze zmienna losowa przyjmie takie wartosci, które róznia sie od wartosci oczekiwanej μ nie wiecej niz o +/- 3 odchylenia standardowe σ. ESTYMACJA PRZEDZIAŁOWA PARAMETRÓW Metoda estymacji przedziałowej to dokonanie szacunku parametru w postaci takiego przedziału (zwanego przedziałem ufnosci), który z duzym prawdopodobienstwem obejmuje prawdziwa wartoać parametru. Przedział ufnosci dla wariancji\ W zaleznosci od tego, czy próba jest mała czy duza, przedział ufnosci dla wariancji buduje sie odpowiednio w oparciu o rozkład χ2 (chi-kwadrat) beda o rozkład normalny. Weryfikacja (testowanie) hipotez statystycznych to drugi, obok estymacji, podstawowy rodzaj wnioskowania statystycznego. Hipoteza statystyczna to kazde przypuszczenie dotyczące wielkosci parametru rozkładu zmiennej losowej w populacji generalnej lub próbnej, albo tez postaci tego rozkładu, uzyskane na podstawie próby losowej. Typy zaleznosci: ♦ funkcyjna: zmiana wartosci jednej zmiennej powoduje cile okreslona zmiane drugiej zmiennej (jednej zmiennej X odpowiada tylko jedna wartosć drugiej zmiennej Y), np. pole kwadratu ♦ stochastyczna: ze zmiane jednej zmiennej zmienia sie rozkład prawdopodobienstwa drugiej zmiennej ROZKŁADY ZMIENNYCH LOSOWYCH CIaGŁYCH Rozkład normalny (Gaussa) Uznawany za najwazniejszy rozkład w teorii prawdopodobieństwa Gestosć prawdopodobienstwa zmiennej losowej o rozkładzie normalnym: Rozkład normalny standaryzowany Reguła trzech (sigm) Rozkład wykładniczy Rozkład chi-kwadrat 2 Rozkład (gamma) Rozkład t-Studenta Rozkład F-Snedecora