odpow chemia, budownictwo PK, I rok, chemia


Wiązanie kowalencyjne niespolaryzowane powstaje na skutek nakładania się orbitali atomowych obsadzonych pojedynczymi elektronami o przeciwnej orientacji spinu. Wiązanie to powstaje, gdy różnica elektroujemności wynosi od 0 do 0,4.

Substancje w których przeważa wiązanie kowalencyjne niespolaryzowane mogą występować w 3 stanach skupienia. Charakteryzują się niskimi temperaturami topnienia i wrzenia, dobrze rozpuszczają się w rozpuszczalnikach niepolarnych (np: chloroform, aceton, benzen), natomiast słabo w rozpuszczalnikach polarnych (np: woda). W stanie ciekłym rozpuszczone w wodzie nie przewodzą prądu. Reakcje z ich udziałem zachodzą powoli i przy małej wydajności.

Wiązanie kowalencyjne powstaje między dwoma atomami niemetali, których wzajemna różnica elektroujemności jest mniejsza od 1,7 w skali Paulinga. Granica ta jest bardzo umowna i ma raczej charakter orientacyjny. Elektrony uwspólnione tworzące wiązanie są przesunięte w stronę atomu pierwiastka o większej elektroujemności, co sprawia, że przy tym atomie tworzy się cząstkowy ładunek elektryczny ujemny, natomiast przy atomie o mniejszej elektroujemności tworzy się dodatni. Wiązanie kowalencyjne spolaryzowane ma charakter dipola elektrycznego.

Wiązania kowalencyjne można jeszcze podzielić na zwykłe, w których uwspólniane elektrony pochodzą w równej liczbie od obu atomów (jeśli jeden "daje" trzy elektrony, to drugi też "daje" trzy) oraz na wiązania koordynacyjne, w których tylko jeden atom jest donorem elektronów lub liczba elektronów, które "daje" jeden atom nie jest równa liczbie, którą daje drugi.

Wiązania koordynacyjne mają często dokładnie taki sam charakter jak wiązania kowalencyjne. W wielu związkach, w których z rachunku elektronów wynika, że część wiązań jest formalnie kowalencyjnych a inna część koordynacyjnych są one w rzeczywistości całkowicie nieodróżnialne, posiadają taką samą geometrię i energię i nie da się praktycznie ustalić, które są które. W wielu związkach chemicznych wiązania koordynacyjne daje się jednak wyraźnie wskazać i mają one pewne szczególne własności, których zwykłe wiązania kowalencyjne nie mogą mieć. Przykładem tego rodzaju wiązań są np. te występujące w Pi kompleksach.

Wiązanie jonowe powstaje między dwoma atomami, których wzajemna różnica elektroujemności jest bardzo duża (Δeu≥1,7). Elektrony zamiast się uwspólnić "przeskakują" na stałe do jednego z atomów. W wyniku tego jeden z atomów ma nadmiar ładunku ujemnego i staje się ujemnie naładowanym jonem (anionem) a drugi ma nadmiar ładunku dodatniego i staje się kationem. Oba atomy tworzą parę jonową (+)(-), która trzyma się razem na zasadzie przyciągania ładunków elektrostatycznych i może w sprzyjających warunkach ulegać dysocjacji elektrolitycznej.

Na ogół, aby wiązanie się wytworzyło, różnica elektroujemności musi być większa lub równa 1,7 w skali Paulinga, jednak granica, przy której tworzy się wiązanie jonowe jest bardzo płynna, gdyż zależy ona od wielu różnych czynników. Na przykład we fluorowodorze różnica elektroujemności między fluorem a wodorem wynosi aż 1,9 a mimo to wiązanie F-H ma charakter kowalencyjny spolaryzowany.

Wiązanie wodorowe formalnie rzecz biorąc nie jest wiązaniem chemicznym, w tym sensie, że nie powstaje ono na skutek wymiany elektronów i jest zwykle dużo mniej trwałe od "prawdziwych" wiązań, jednak ten rodzaj oddziaływania również łączy ze sobą atomy. Wiązanie wodorowe polega na "dzieleniu" między dwoma atomami (np. tlenu) jednego atomu wodoru, tak, że atom wodoru jest częściowo połączony z nimi oboma. Można to też ująć w ten sposób, że atom wodoru jest powiązany z oboma atomami wiązaniami "połówkowymi", gdyż jedno normalne pojedyncze (czyli dwuelektronowe) wiązanie wodór-inny atom jest dzielone na dwa słabsze "półwiązania" inny atom-wodór i wodór-inny atom.

Oddziaływania międzycząsteczkowe to inne niż wiązania chemiczne siły wiążące atomy i cząsteczki. Podstawowa różnica między oddziaływaniami międzycząsteczkowymi a wiązaniami chemicznymi, polega na tym, że nie wiążą one atomów na tyle trwale, aby umożliwiało to uznanie powstałych w ten sposób struktur za związki chemiczne w pełnym znaczeniu tego terminu. Granica między oddziaływaniami międzycząsteczkowymi i wiązaniami jest jednak płynna. Na przykład wiązanie wodorowe - jeśli występuje w obrębie jednej cząsteczki jest często traktowane jak słabe wiązanie chemiczne, jeśli jednak wiąże ono dwie lub więcej cząsteczek w duże konglomeraty o zmiennym składzie, można je traktować jako oddziaływanie międzycząsteczkowe. Tworzeniem się tego rodzaju konglomeratów powiązanych rozmaitymi oddziaływania międzycząsteczkowymi zajmuje się chemia supramolekularna.

Oddziaływania międzycząsteczkowe - inne niż wiązania chemiczne siły wiążące atomy i cząsteczki.

Do oddziaływań tych zalicza się (w kolejności od najsilniejszych do najsłabszych):

Ciało krystaliczne - rodzaj ciała stałego, w którym cząsteczki, atomy lub jony nie mają pełnej swobody przemieszczania się w objętości ciała i zajmują ściśle określone miejsca w sieci przestrzennej - mogą jedynie drgać wokół położenia równowagi.

Określenie - ciało krystaliczne odnosi się do ciał o dwojakiej budowie:

Kryształy posiadają symetrię translacyjną oraz uporządkowanie układu w skali powyżej 50 Å, co odróżnia je od ciał amorficznych, np. szkła.

Ciała krystaliczne powstałe w wyniku procesów naturalnych, geologicznych (zwykle są to polikryształy) nazywamy minerałami.

Niektóre kryształy można opisać za pomocą jednakowego układu odniesienia. W jego skład wchodzą:

Kąty zawarte pomiędzy osiami krystalograficznymi oraz odcinki a, b, c stanowią tzw. stałe sieciowe, wyznaczając kształt komórki elementarnej (zob. Sieć Bravais).

Kryształy mają różny stopień symetrii geometrycznej i różne stałe sieciowe. Na tej podstawie pogrupowano je w układy krystalograficzne.

Oddziaływania między cząsteczkami tworzącymi kryształ bywają bardzo różne. Mogą to być:

Występują również swoiste "hybrydy", jak np. grafit, który posiada tzw. płaszczyzny grafenowe, w których między atomami występują silne wiązania kowalencyjne, natomiast oddziaływania między płaszczyznami mają charakter sił van der Waalsa.

Kohezja - ogólna nazwa zjawiska stawiania oporu przez ciała fizyczne, poddawane rozdzielaniu na części. Jej miarą jest praca potrzebna do rozdzielenia określonego ciała na części, podzielona przez powierzchnię powstałą na skutek tego rozdzielenia.

Kohezji nie należy mylić z adhezją czyli zdolnością do łączenia się powierzchni ciał fizycznych. Jakkolwiek źródłem obu zjawisk jest występowanie rozmaitych oddziaływań międzycząsteczkowych, adhezja jest zjawiskiem czysto powierzchniowym, podczas gdy kohezja wynika z sił działających wewnątrz rozrywanego lub zgniatanego ciała.

Kohezja ciał fizycznych zależy od wielu różnych czynników. Są to m.in.:

Adhezja wynika z oddziaływań międzycząsteczkowych stykających się substancji. Granicznym przypadkiem odróżniającym adhezję od reakcji chemicznej jest powstanie w łączonej warstwie nietrwałych wiązań chemicznych.

Granica między adhezją i zjawiskami powierzchniowymi zachodzącymi pod wpływem tworzenia się wiązań chemicznych jest bardzo płynna. Np. trudno jest jednoznacznie rozróżnić "czystą adhezję" od adhezji na skutek tworzenia się słabych wiązań wodorowych, które są jednocześnie rodzajem wiązań chemicznych i oddziaływaniami międzycząsteczkowymi. W praktycznych, inżynieryjnych badaniach (np. skuteczności działania klejów), przez adhezję rozumie się siłę połączenia dwóch warstw klejonego materiału bez wnikania w naturę oddziaływań powodujących powstanie trwałej spoiny.

Z makroskopowego punktu widzenia czystą adhezję opisuje się jako odwracalny termodynamiczny proces zachodzący w warstwie łączących się materiałów wynikający z różnicy napięć powierzchniowych na styku substancji.

Układ koloidalny (koloid, układ koloidowy, roztwór koloidalny) - niejednorodna mieszanina, zwykle dwufazowa, tworząca układ dwóch substancji, w którym jedna z substancji jest rozproszona w drugiej. Rozdrobnienie (czyli dyspersja) substancji rozproszonej jest tak duże, że fizycznie mieszanina sprawia wrażenie substancji jednorodnej, jednak nie jest to wymieszanie na poziomie pojedynczych cząsteczek.

W koloidach stopień dyspersji wynosi od 105 do 107 cm-1 - wówczas wielkość cząstek fazy rozproszonej (zdyspergowanej) sprawia, że ważne są zarówno oddziaływania pomiędzy nią i fazą dyspergującą, jak i oddziaływania wewnątrz obu faz. Według IUPAC układ dyspersyjny jest układem koloidalnym, gdy rozmiary cząstek fazy rozproszonej (cząsteczek chemicznych lub ich agregatów) albo rozmiary nieciągłości układu koloidalnego są w zakresie od 1 nm do 1 µm przynajmniej w jednym kierunku.

Typowy układ koloidalny (tzw. koloid fazowy) składa się z dwóch faz:

Inny rodzaj koloidów to koloidy cząsteczkowe, gdzie fazą rozproszoną są makrocząsteczki, np. polimery (np. żelatyna, skrobia, białka) - nie występuje wówczas wyraźna granica fazowa, bo cząsteczki rozpuszczalnika mogą wnikać do wewnątrz makrocząsteczki - większość koloidów cząsteczkowych powstaje w sposób samorzutny w wyniku rozpuszczania w rozpuszczalniku (koloidy liofilowe, hydrofilowe). Niektóre ich właściwości są inne niż właściwości koloidów fazowych.

Większość układów koloidalnych nazywana jest zolami, przy czym pojęcie zolu jest niejednoznaczne. Podobnie niejednoznaczne jest pojęcie aerozolu.

Układy koloidalne z fazą ciągłą w postaci gazu to gazozole, natomiast z fazą ciągłą w postaci cieczy to liozole. Ciała stałe i ciecze przenikające się wzajemnie to żele.

Reguła van 't Hoffa - empiryczna reguła wyrażająca zmianę szybkości reakcji w zależności od temperatury. Według tej reguły wzrost temperatury o 10 K powoduje 2-4-krotny wzrost szybkości reakcji. Reguła van 't Hoffa jest spełniona dla reakcji homogenicznych, w temperaturze do 500°C.

Z regułą van 't Hoffa wiąże się Temperaturowy Współczynnik Szybkości Reakcji (TWSR), oznaczany symbolem γ. Stosunek szybkości reakcji chemicznej po zmianie temperatury do szybkości tej samej reakcji przed ową zmianą temperatury (zarówno wzrostem, jak i spadkiem) wyraża następujące równanie:

0x01 graphic

gdzie: 0x01 graphic


Przykład użycia wzoru:

Obliczyć zmianę szybkości reakcji chemicznej po zmianie temperatury układu z 290 K na 340 K wiedząc, że TWSR γ = 2.

0x01 graphic

CaCO3 ® CaO +CO2 endotermiczna

2Mg + O2 = 2MgO egzotermiczna



Wyszukiwarka

Podobne podstrony:
strona tytułowa na teczkę RT, budownictwo PK, I rok, rys tech
strona tytułowa na teczkę BO, budownictwo PK, I rok, rys tech
temat A i B, budownictwo PK, I rok, rys tech
Woda zarobowa, budownictwo pk, sem 1, chemia
Korozja betonu, budownictwo pk, sem 1, chemia
chemia nr 4-sik, Studia budownictwo pierwszy rok, Chemia budowlana, sprawka z chemii
SprawozdanieNr2Kevcio, Studia budownictwo pierwszy rok, Chemia budowlana, sprawka z chemii
sprawozdaniewapno2, Studia budownictwo pierwszy rok, Chemia budowlana, sprawka z chemii
Moje sprawozdanie chemia nr 3, Studia budownictwo pierwszy rok, Chemia budowlana, Chemia budowlana,
cemm, Studia budownictwo pierwszy rok, Chemia budowlana, sprawozdania
Sprawozdanie z ćw nr6 chemia bud, Studia budownictwo pierwszy rok, Chemia budowlana, sprawozdania
SPRAWOZDANIE NR 2 CHEMIA BUDOWLANA SPOIWA WAPIENNE MAJ 2012, Studia budownictwo pierwszy rok, Chemia
LAB1-ELEKTRO-AK KM, chemia pk rok 2
ELEKTROLITY, Studia budownictwo pierwszy rok, Chemia budowlana, Chemia budowlana, Na Egzamin
ściaga+chemia, Budownictwo PK, Chemia Budowlana
Sprawozdanie z ćw nr1 - chemia bud, Studia budownictwo pierwszy rok, Chemia budowlana, sprawka z che
chemia nr3-sik, Studia budownictwo pierwszy rok, Chemia budowlana, sprawka z chemii

więcej podobnych podstron