TRANSPORT PĘCHERZYKOWY, Biotechnologia i, Rok I, Biologia komórki, Biologia komorki materialy


TRANSPORT PĘCHERZYKOWY

 

Białka wydzielnicze są uwalniane z komórki w drodze egzocytozy

We wszystkich komórkach eukariotycznych zachodzi stały przepływ pę­cherzyków, które pączkują z sieci trans AG  i ulegają fuzji z błoną ko­mórkową.

Ten szlak konstytutywnej egzocytozy (wydzielanie ciągłe, niezależne od bodźców zewnętrznych) działa w sposób ciągły i dostarcza nowo powstałe lipidy i białka do błony komórkowej; jest to droga zapew­niająca wzrost błony komórkowej w czasie powiększania się komórek przed ich podziałem. Niesie ona również w procesie wydzielania (sekrecji), białka, które mają być wydzielone na zewnątrz. Pewne wydzielone białka przywierają do powierzchni komórki i stają się powierzchniowymi białkami błony komórkowej, niektóre są wbudowywane w substancję międzykomórkową, a jeszcze inne dyfundują do płynu, między­komórkowego, aby odżywiać inne komórki lub stanowić dla nich sygnały.

Poza drogą konstytutywnej egzocytozy działającej we wszystkich ko­mórkach eukariotycznych w sposób ciągły, istnieje droga egzocytozy regu­lowanej (wydzielanie okresowe, zachodzące pod wpływem bodźców), która funkcjonuje tylko w komórkach wyspecjalizowanych w wydzielaniu. Wyspecjalizowane komórki wydzielnicze wytwarzają duże ilości szczególnych produktów, takich jak hormony, śluz lub enzymy trawienne, które są magazynowane w pęcherzykach wydzielniczych. Pęcherzyki wydzielnicze odpączkowują z sieci trans AG i nagromadza­ją się w pobliżu błony komórkowej. Ulegają one fuzji z błoną komórkową i uwalniają swą zawartość na zewnątrz tylko wtedy, gdy komórka zostanie pobudzona przez sygnał zewnątrzkomórkowy. Na przykład, wzrost stężenia glukozy we krwi jest dla komórek trzustki sygnałem do wydzielenia hormonu insuliny.

Białka przeznaczone do pęcherzyków wydzielniczych są sortowane i pa­kowane w sieci trans AG. Białka wędrujące tą drogą mają właściwości wywołujące ich agregację w warunkach jono­wych panujących w sieci trans AG (środowisko kwaśne i wysoki po­ziom Ca2+). Zagregowane białka są rozpoznawane przez nieznany me­chanizm i pakowane do pęcherzyków wydzielniczych, które odrywają się od strefy trans. Białka wydzielane w drodze konstytutywnej nie agregują i dlatego są automatycznie przenoszone do błony komórkowej przez pę­cherzyki transportujące drogi konstytutywnej. Selektywna agregacja po­zwala na gęste upakowanie białek wydzielniczych w pęcherzykach wydziel­niczych, do stężeń 200 razy większych niż stężenie niezagregowanych bia­łek w świetle cystern AG. Zawartość takich pęcherzyków jest zagęszczana a ich rozmiar ulega zmniejszeniu - przekształcają się w ziarna wydzielnicze. To umożliwia komórkom wydzielniczym szybkie wydzielenie wielkich ilości białka, gdy zostaną do tego pobudzo­ne.

Gdy pęcherzyk wydzielniczy lub pęcherzyk transportujący ulega fuzji z błoną komórkową i wyładowuje swą zawartość w drodze egzocytozy, je­go błona staje się częścią błony komórkowej. Aczkolwiek powinno to znacznie zwiększyć powierzchnię błony komórkowej, zwiększenie takie jest tylko przejściowe, ponieważ składniki błony są usuwane z innych ob­szarów powierzchni w drodze endocytozy prawie tak samo szybko, jak zostały one dodane przez egzocytozę. To usuwanie błony przywraca zarów­no lipidy, jak i białka pęcherzyków błonowych do sieci trans AG, gdzie mogą być użyte ponownie.

Wyróżnia się dwa główne typy endocytozy na podstawie wielkości po­wstających pęcherzyków endocytotycznych. Pinocytoza („picie przez ko­mórkę") — to wchłanianie płynu i cząsteczek przez małe pęcherzyki (o średnicy < 150 nm). Fagocytoza („jedzenie przez komórkę") — to wchłanianie dużych cząstek, np. mikroorganizmów i szczątków komórko­wych, przez duże pęcherzyki -  fagosomy (o średnicy > 250 nm). O ile wszystkie komórki eukariotyczne ustawicznie wchłaniają płyn i czą­steczki przez pinocytozę, o tyle duże cząstki są wchłaniane głównie przez wyspecjalizowane komórki fagocytujące, np. makrofagi.

 

Wyspecjalizowane komórki fagocytujące wchłaniają duże cząstki

U pierwotniaków fagocytoza jest formą pobie­rania pokarmu; duże cząstki, np. bakterie, są pobierane do fagosomów, które następnie łączą się przez fuzję z lizosomami, gdzie cząstki pokarmu ulegają strawieniu. W organizmach wielokomórkowych tylko nieliczne komórki mogą wchłaniać duże cząstki. W jelicie zwierząt duże cząstki po­karmowe muszą zostać najpierw rozłożone przez enzymy zewnątrzkomórkowe do pojedynczych cząsteczek, zanim będą mogły być pobrane przez komórki absorpcyjne, wyścielające jelito.

Niemniej jednak, fagocytoza jest u większości zwierząt procesem waż­nym dla celów innych niż odżywianie. Najbardziej wydajnie jest prowadzo­na przez komórki fagocytujące, takie jak makrofagi, szeroko rozpowszechnione w tkankach i pewne krwinki białe. Komórki fagocytujące bro­nią organizm przed infekcją, wchłaniając atakujące mikroorganizmy. Aby jakaś cząstka została wchłonięta przez makrofaga lub krwinkę białą, musi wpierw zostać związana do jej powierzchni i uaktywnić jeden z wielu receptorów powierzchniowych, który zaindukuje wysuwanie pła­towatych wypustek błony komórkowej, zwanych pseudopodiami, które ota­czają bakterie i łączą się na swoich końcach tworząc fagosom. Komórki fagocytujące odgrywają również ważną rolę w usuwaniu mar­twych i uszkodzonych komórek oraz szczątków komórkowych. Na przy­kład makrofagi wchłaniają każdego dnia ponad 1011 naszych zużytych ery­trocytów.

 

Płyn i makrocząsteczki są pobierane na drodze pinocytozy

Komórki eukariotyczne ustawicznie wciągają małe fragmenty swojej bło­ny komórkowej w postaci drobnych pęcherzyków pinocytotycznych, które później wracają do powierzchni komórki.

Na przykład makrofag w każdej godzinie wchłania ilość płynu odpo­wiadającą 25% jego własnej objętości. Oznacza to, że wchłania on co mi­nuta 3% swojej błony komórkowej, co odpowiada wchłonięciu 100% bło­ny w ciągu pół godziny. Ponieważ całkowita powierzchnia i objętość komórki pozostają podczas tego procesu niezmienione, jest oczywiste, że tyle samo błony jest dodawane do powierzchni komórki przez fuzję pę­cherzyków przy egzocytozie, ile jest usuwanych w drodze endocytozy.

Pinocytoza jest zazwyczaj przeprowadzana przez dołki i pęcherzyki opłaszczone klatryną,. Po oderwaniu się od błony komórkowej pęcherzyki okryte klatry­ną szybko zrzucają swój płaszcz i łączą się przez fuzję z endosomem. Dołki opłaszczone po inwaginacji tworzą pęcherzyki opłaszczone, zamy­kające  w sobie część płynu zewnątrzkomórkowego, wraz z rozpuszczonymi w nim substancjami i następnie  wprowadzają je do endosomu. To pobieranie płynu jest w zasadzie zrównoważone utratą płynu zachodzącą podczas egzocytozy.

Endocytoza przebiegająca z udziałem receptorów stanowi specyficzną drogę prowadzącą do wnętrza komórek zwierzęcych

Pinocytoza, nie jest procesem wybiórczym. Pęcherzyki endocytotyczne po prostu zamykają w sobie jakiekol­wiek cząsteczki przypadkowo obecne w płynie zewnątrzkomórkowym i przenoszą je do wnętrza komórki. Jednak w większości komórek zwie­rzęcych pinocytoza prowadzona poprzez pęcherzyki okryte klatryną sta­nowi równocześnie efektywną drogę pobierania z płynu zewnątrzkomór­kowego specyficznych makrocząsteczek (ligandów). Te ostatnie wiążą się z komple­mentarnymi receptorami na powierzchni komórki i wnikają do wnętrza komórki jako kompleksy makrocząsteczek z receptorami, zawarte w pęcherzykach zamkniętych klatryną. Proces ten — nazywany endocytozą kierowaną receptorami (receptorową) — stanowi selektywny mechanizm zagęszczają­cy, który w porównaniu ze zwykłą pinocytozą zwiększa ponad 1000 razy wydajność pobierania określonych makrocząsteczek. W konse­kwencji nawet te składniki płynu zewnątrzkomórkowego, które występu­ją w niewielkim stężeniu, mogą być wchłonięte bez pobierania odpowied­nio dużej ilości płynu zewnątrzkomórkowego. Ważnym przykładem endocytozy kierowanej przez receptory w komórkach zwierzęcych jest pobie­ranie cholesterolu, potrzebnego do wzrostu błon.

Cholesterol jest bardzo trudno rozpuszczalny i transportowany w krwiobiegu w postaci związanej z białkami jako cząstki o nazwie lipoproteiny o malej gęstości, czyli LDL (ang. low-density lipoproteins). Cząstki LDL wiążą się z receptorami umieszczonymi na powierzchni komórki, a tak powstałe kompleksy są wchłaniane na drodze endocytozy kierowanej przez receptory i doprowadzane do endosomów. Wnętrze endosomów jest bardziej kwaśne niż otaczający je cytozol lub płyn zewnątrzkomórkowy i to kwaśne środowisko powoduje oddysocjowanie cząstek LDL od ich receptorów. Receptory powracają w pęcherzykach transportujących do błony komórkowej, gdzie są używane ponownie, natomiast cząstki LDL są dostarczane do lizosomów. W lizosomach cząstki LDL są rozkładane przez enzymy hydrolityczne; cholesterol zostaje uwolniony i przechodzi do cytozolu, skąd jest pobierany podczas syntezy nowych fragmentów błony. Receptory LDL są z powierzchni komórki stale wycofywane do wnętrza komórki i ulegają recyklizacji, niezależnie od tego, czy są związane z LDL.

Ta droga pobierania cholesterolu jest przerwana u osób, które odzie­dziczyły uszkodzony gen kodujący białkowy receptor LDL. W pewnych przypadkach receptorów w ogóle brakuje, a w innych są obecne, ale nie­funkcjonalne. Ponieważ w każdym z tych przypadków komórki nie są zdolne do pobierania LDL, u osób takich cholesterol akumuluje się we krwi, powodując predyspozycję do powstania arteriosklerozy. Większość tych osób umiera wcześnie na zawał, powodowany zaczopowaniem tętnic zaopatrujących serce.

Innymi makrocząsteczkami (ligandami) wchłanianymi przez komórkę są np. transferyna (glikoproteina osocza krwi transportująca do komórek   żelazo), witellogenina (forma prekursorowi białek żółtka w jajach), czynniki wzrostowe, hormony polipeptydowe (np. insulina), wirusy, toksyny bakterii.

Endocytozą za pośrednictwem receptorów jest używana też do pobie­rania wielu innych istotnych metabolitów, takich jak witamina B12 i żela­zo, których komórka nie może pobrać mechanizmami transportu błonowego. Zarówno witamina BI2, jak i żelazo wnika­ją do niedojrzałej krwinki czerwonej jako kompleksy z białkiem. Tą drogą są wchłaniane również liczne receptory powierzchniowe, które wią­żą zewnątrzkomórkowe cząsteczki sygnałowe; niektóre przez recyklizację powracają do błony komórkowej do powtórnego użycia, inne natomiast są degradowane w lizosomach. Niestety, endocytoza przebiegająca za po­mocą receptorów może być wykorzystana przez wirusy; tą drogą wchodzą do komórki wirusy grypy, a także wirus HIV.

 

Makrocząsteczki doprowadzone przez endocytozę są sortowane w endosomach

Materiał zewnątrzkomórkowy pobrany w drodze pinocytozy jest szybko przenoszony do endosomów - złożonego zespołu połą­czonych ze sobą cewek błonowych i większych pęcherzyków. Wyróżnia się  dwa zespoły endosomów: endosomy wczesne, leżące  tuż pod błoną komórkową, oraz endosomy późne -  w pobliżu jądra. Wnętrze przedziału tworzonego przez endosomy ma od­czyn kwaśny (pH 5-6) dzięki działaniu w błonach tych organelli protono­wej ATPazy transportującej, która pompuje H+ z cytozolu do światła en­dosomów.

Przedział utworzony przez endosomy jest głównym miejscem sortowa­nia na prowadzącej do wnętrza komórki drodze endocytozy, tak jak sieć trans AG pełni tę funkcję w prowadzącej na zewnątrz drodze sekrecyjnej. Kwaśne środowisko w endosomach odgrywa kluczową rolę w pro­cesie sortowania, zmuszając wiele receptorów do uwolnienia związanego z nimi cargo (ładunku). Drogi, którymi będą wędrowały receptory po wejściu do en­dosomów, różnią się w zależności od typu receptora:

1) większość wraca do tej samej domeny błony komórkowej, z której przybyły, jak to jest w przypadku receptora LDL,

2) pewne wędrują do lizosomów, gdzie ulegają degradacji,

3) niektóre są przemieszczane do odmiennych domen błony komórkowej, przenosząc przez to swoje car­go cząsteczek z jednej przestrzeni zewnątrzkomórkowej do drugiej — w procesie zwanym transcytozą.

Cząsteczki cargo, które pozostają związane ze swoimi receptorami, dzielą los tych receptorów. Te, które oddysocjowują od swoich recepto­rów w endosomie, są skazane, wraz z większością zawartości  endosomu, na destrukcję w lizosomach.

 

Lizosomy są głównym miejscem trawienia wewnątrzkomórkowego

Wiele cząsteczek zewnątrzkomórkowych wchłoniętych przez ko­mórki kończy swą drogę w lizosomach. Podobnie jak inne organelle komórkowe, lizosomy mają zarówno specyficzny zestaw enzymów, jak i specyficzną błonę ograniczającą. Bło­na lizosomów zawiera białka transportujące, które umożliwiają przenie­sienie końcowych produktów trawienia makrocząsteczek, takich jak ami­nokwasy, cukry i nukleotydy — do cytozolu, gdzie mogą być użyte przez komórkę lub skąd mogą być wydalone poza obręb komórki. Błona ta, po­dobnie jak błona endosomów, zawiera ATPazę transportującą H+, która pompuje H+ do wnętrza lizosomu, podtrzymując kwaśne pH jego wnętrza. Większość białek błony lizosomu jest niezwykle silnie glikozylowana, a cukry, które pokrywają większość powierzchni białek skiero­wanych do światła lizosomu, ochraniają te białka przed strawieniem przez proteazy lizosomowe.

Wyspecjalizowane enzymy trawienne i białka błon lizosomu są syntety­zowane w ER i transportowane przez aparat Golgiego do jego sieci trans. Podczas pobytu w ER i sieci cis AG enzymy zostają oznakowane specyficzną ufosforylowaną grupą cukrową (mannozo-6-fosforan) tak, iż dochodząc do sieci trans AG są rozpoznawane przez odpowiedni re­ceptor mannozo-6-fosforanu, a przez to wysortowane i upakowane do pę­cherzyków transportujących, które odpączkowują i dostarczają swą za­wartość do lizosomów poprzez późne endosomy.

W zależności od swego pochodzenia materiały docierają do lizosomów różnymi drogami. Cząstki zewnątrzkomórkowe są po­bierane do fagosomów, które ulegają fuzji z lizosomami, oraz że płyn ze-wnątrzkomórkowy i makrocząsteczki są pobierane do mniejszych pęche­rzyków  - endosomów biorących udział w endocytozie receptorowej i dostarczających swą zawartość do lizosomów. Komórki mają również dodatkową dro­gę dostarczania materiałów do lizosomów, używaną do degradacji zuży­tych części samej komórki. Proces rozpoczyna się prawdopodobnie otoczeniem organelli przez błony pochodzące z ER, co tworzy cytosegregosom, który następnie ulega fuzji z lizosomom tworząc autofagosom.

 

Pęcherzyki transportujące przenoszą białka rozpuszczalne i błony między przedziałami

Ruch pęcherzyków między przedziałami syste­mu błon wewnętrznych odbywa się albo na zewnątrz komórki (transport anterogradowy = droga sekrecyjna, kończąca się wydzieleniem niesionych przez pęcherzyk białek na zewnatrz)  albo też do wnętrza komórki (transport retrogradowy = droga endocytozy odpowie­dzialna za wchłanianie i degradację cząsteczek spoza komórki, prowadzi od błony komórkowej, do lizosomów).

Aby przeprowadzić swą funkcję właściwie, każdy pęcherzyk transportu­jący, który odpączkowuje z danego przedziału, musi zabrać ze sobą tylko białka odpowiednie dla przedziału docelowego i musi ulec fuzji tylko z od­powiednią błoną docelową. Na przykład, pęcherzyk niosąc cargo (ładu­nek) z aparatu Golgiego do błony komórkowej nie może przyjąć białek, które mają pozostać w aparacie Golgiego i może ulec fuzji tylko z błoną ko­mórkową, a nie z błoną jakiejkolwiek innej organelli. Biorąc udział w tym ustawicznym przepływie składników błonowych, każda organella musi za­chować swą własną odrębność, to jest swój własny wyróżniający skład bia­łek i lipidów. Wszystkie te procesy rozpoznawania się zależą od białek zwią­zanych z błoną pęcherzyków transportujących.

 

Pączkowaniem pęcherzyków kieruje układ białek opłaszczających

Pęcherzyki odpączkowujące z błon mają zazwyczaj na swojej cytozolowej powierzchni charakterystyczny płaszcz białkowy i dlatego nazwano je pę­cherzykami opłaszczonymi. Po ukończeniu pączkowania płaszcz zosta­je utracony, co pozwala błonie pęcherzyka oddziaływać bezpośrednio z błoną, z którą ma się złączyć przez fuzję. Istnieje kilka rodzajów pęche­rzyków opłaszczonych, różniących się składem białkowego płaszcza. Uważa się, że płaszcz ma przynajmniej dwie funkcje: formuje bło­nę podczas tworzenia pęcherzyka i współdziałania przy wychwytywaniu czą­steczek, które mają być dalej transportowane.

Najlepiej zbadane są pęcherzyki, których płaszcz tworzy głównie biał­ko klatryna; są to pęcherzyki okryte klatryną. Odpączkowują one zarówno z apara­tu Golgiego w skierowanej na zewnątrz drodze sekrecyjnej oraz z błony komórkowej w skierowanej do wewnątrz drodze endocytozy. Na przy­kład, przy błonie komórkowej każdy pęcherzyk powstaje początkowo ja­ko dołek oplaszczony klatryną. Cząsteczki klatryny układają się na cytozolowej powierzchni błony w rodzaj koszyka, który kształtuje błonę w pę­cherzyk. Wokół szyjki głęboko wpuklonej błony tworzy się pierścień z dynaminy, małego białka wiążącego GTP. Następnie dynamina hydrolizuje związany z nią GTP, co powoduje obciśnięcie pierścienia, a przez to oderwanie pęcherzyka od błony. W transporcie pęcherzyko­wym biorą również udział inne rodzaje pęcherzyków transportujących o odmiennych białkach opłaszczających. Powstają one w podobny sposób i przenoszą charakterystyczne dla siebie zestawy cząsteczek pomiędzy ER, aparatem Golgiego i błoną komórkową.

Sama klatryna nie odgrywa żadnej roli w wychwytywaniu specyficznych cząsteczek przeznaczonych do transportu. Funkcję tę w pęcherzykach opłaszczonych klatryną pełni odmienna klasa białek opłaszczających, o nazwie adaptyny, zarówno wiążących płaszcz z błoną pęcherzyka, jak i poma­gających w selekcji cząsteczek, które mają być transportowane. Cząsteczki przeznaczone do transportu (cargo = ładunek) mają  specyficzne sygnały transportu, które są rozpoznawane przez receptory cargo, znajdujące się w błonie przedziału wyjściowego. Adaptyny pomagają w wychwyceniu określonych cząsteczek cargo przez przechwytywanie receptorów cargo i połączonych z nimi cząsteczek cargo. W ten spo­sób wyselekcjonowany zestaw cząsteczek ładunku, związanych ze swoimi specyficznymi receptorami, zostaje wprowadzony do wnętrza każdego no­wo powstającego pęcherzyka opłaszczonego klatryną.

Odmienna klasa pęcherzyków opłaszczonych, o nazwie pęcherzyki opłaszczone białkami COP, bierze udział w przenoszeniu cząsteczek po­między ER a aparatem Golgiego oraz między poszczególnymi strefami aparatu Golgiego.

 

 

 

Niektóre typy pęcherzyków opłaszczonych

 

Typ pęcherzyka opłaszczonego

Białka płaszcza

Pochodzenie

Przeznaczenie

Okryty klatryną

klatryną + adaptyna 1

aparat Golgiego

lizosom (poprzez endosomy)

 

 

 

 

Okryty klatryną

klatryną + adaptyna 2

błona komórkowa

endosomy

 

 

 

 

Okryte białkami COP

białka COP

ER,

cysterna Golgiego

aparat Golgiego

aparat Golgiego

cysterna Golgiego,

ER

 

 

Specyficzność przywierania pęcherzyków do błony zależy od białek SNARE

Pęcherzyk transportujący, który oderwał się od błony, musi odnaleźć swą drogę do właściwego celu, gdzie przekaże swą zawartość. Jeśli odległość jest mała — tak jak między ER a aparatem Golgiego — pęcherzyk prze­mieszcza się w drodze prostej dyfuzji. Jeśli odległość jest duża — taka jak od aparatu Golgiego do zakończenia aksonu komórki nerwowej — pę­cherzyki są transportowane aktywnie przez białka motoryczne, które po­ruszają się wzdłuż włókienek cytoszkieletu.

Gdy pęcherzyk transportujący osiągnie swą docelową organellę, musi ją rozpoznać i związać się z nią. Tylko wtedy może nastąpić fuzja błony pę­cherzyka z błoną docelową i wyładowanie niesionego cargo.  Wszystkie typy pęcherzyków transportujących w komórce mają na swej powierzchni znaczniki molekularne, które identyfikują pęcherzyk zależnie od jego po­chodzenia i zawartości. Znaczniki te muszą zostać rozpoznane przez kom­plementarne receptory na powierzchni odpowiedniej błony docelowej, łącznie z błoną komórkową. Uważa się, że w rozpoznawaniu pęcherzyków bierze udział rodzina pokrewnych sobie białek transbłonowych o nazwie SNARE (ang. SNAP receptors). Białka SNARE pęcherzyków (nazywane v-SNARE) są specy­ficznie rozpoznawane przez komplementarne białka SNARE na cytozolowej powierzchni błony docelowej (nazywane t-SNARE). Uwa­ża się, że każda organella i każdy typ pęcherzyka transportującego niesie specyficzne dla siebie białka SNARE, a poprawność fuzji pęcherzyka z właściwą błoną jest zapewniona oddziaływaniem pomiędzy komplemen­tarnymi białkami SNARE.

Po rozpoznaniu przez pęcherzyk transportujący jego błony docelowej i przywarciu do niej, przekazanie ładunku do nowego przedziału wymaga fuzji pęcherzyka z błoną tego przedziału. Fuzja nie tylko dostarcza zawar­tość pęcherzyka do wnętrza docelowej organelli, ale również wbudowuje błonę pęcherzyka do błony organelli. Jednakże fuzja nie zawsze następu­je zaraz po przywarciu obu błon i często musi oczekiwać na specyficzny sygnał uruchamiający. O ile przywarcie (dokowanie) wymaga tylko dosta­tecznego zbliżenia błon pozwalającego na interakcję białek wystających z błon obu spotykających się struktur, o tyle proces fuzji wymaga kontaktu znacznie bliższego, na odległość mniejszą niż 1,5 nm. Aby to nastąpiło, niezbędne jest usunięcie wody z hydrofilowych powierzchni błon, proces energetycznie bardzo niekorzystny. Jest więc wielce prawdopodobne, że fuzja błon w komórce jest katalizowana przez wyspecjalizowane białka tworzące w miejscu fuzji kompleks fuzyjny, który właśnie umożliwia przekroczenie takiej bariery energetycznej.

 



Wyszukiwarka

Podobne podstrony:
ecm, Biotechnologia i, Rok I, Biologia komórki, Biologia komorki materialy
biolcom, Biotechnologia i, Rok I, Biologia komórki, Biologia komorki materialy
porównanie pro i euka.2, Biotechnologia i, Rok I, Biologia komórki, Biologia komorki materialy
Komórka, Biotechnologia i, Rok I, Biologia komórki, Biologia komorki materialy
CYKL KOMORKOWY, Biotechnologia i, Rok I, Biologia komórki, Biologia komorki materialy
receptory, Biotechnologia i, Rok I, Biologia komórki, Biologia komorki materialy
ćwiczenie 8 transport pęcherzykowy, Biologia Komórki, Prezentacje, 2011 lato
TRANSPORT PĘCHERZYKOWY, biologia, biologia komórki
TRANSPORT PĘCHERZYKOWY, biologia komórki
Wykład 5, Biologia UWr, II rok, Biologia Komórki Roślinnej
biologia komórki1, Biotechnologia PŁ, biologia komórki
Egzocyt(1), Studia, II semestr II rok, Biologia komórki
Pytania Pyza, Biologia UJ, II rok, Biologia komórki
Enzymy, Studia, II semestr II rok, Biologia komórki
Praca naukowa z biologii, MEDYCYNA - ŚUM Katowice, I ROK, Biologia medyczna, 1. BIOLOGIA KOMÓRKI
Apoptoza, Materiały, Biologia komorki materialy
oznaczanie ssaków, UMCS biotechnologia I rok (2010-2011), Biologia rozwoju roślin i zwierząt
Gradient ekspresji genów w regulacji morfogenezy u ssaków, Medycyna ŚUM, Rok 1, Biologia medyczna, T

więcej podobnych podstron