(c)'=0
(xn)'=nxn-1
(sinx)'=cos
(cosx)'=-sinx
(tgx)'=
=1+tg2x
(ctgx)'=
=1-ctg2x
(ax)'=axlna a<>0
(ex)'=ex
(
)'=
(arcsinx)'=
(arccosx)'=
(arctgx)'=
(arcctg)'=
(logax)'=
(lnx)'=
(cf(x))'=cf'(x)
(f(x)+g(x))'= f'(x)+g'(x)
(f(x)-g(x))'=f'(x)-g'(x)
(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)
g(x)<>0
=(f'(x)*g(x)-f(x)*g'(x))/(g2(x))
=((ex)'*lnx-ex(lnx)”)/(ln2x)=(exlnx-ex*1/x)/(ln2x)
(f(x)g(x)')=((elnf(x))g(x))=(eg(xlnf(x))'=eg(x)lnf(x)*g(x)lnf(x)= f(x)g(x)(g'(x)lnf(x)+g(x)/f(x)*f'(x))
f(g(x))'=f'(g(x)*g'(x))
(ex)(n)=ex
sinx(n)=sin(x+(n*pi)/2)
cosx(n)=
(tg2x)=2tg*1/(cos2x)
(1+x4)3=3(1+x4)*4x3
((22)x)'=((22)x)*ln2*(2x)'=22*ln2*2x*ln2
(2lnx)'=2lnx*ln2*1/x
(sin(lnx))“=(cos(lnx))'*1/x+coslnx*(1/x)'= -sinlnx*1/x+coslnx*(-1x-2)
=((lnx)1/3)'=1/3*lnx-2/3*1/x
(xx)'=exlnx*(xlnx)'=xx(lnx+1)
=
*(
ln
*0,5
)=
(xsinx)'=(sinxlnx+sinx/x*x')= xsinx(cosxlnx+sinx/x*1)= xsinx(coslnx+sinx/x)
(cos(xlnx))'=sin(xlnx)*(xlnx)'=sin(xlnx)*(1*lnx+x*1/x)= sin(xlnx)*(lnx+1)
=(
lnx+
)*
(1/x)'=-1/x2
(lnex)'=x
(elnx)'=x
(arcsin(sinx))'=x
(arctg(tgx))'=x