Image3294

Image3294



f


S{'/)

\f(x,y)dx

r(y}

ćy



Wyszukiwarka

Podobne podstrony:
Image3288 d    d J B(y)ćy = J sfyjf f(x,y)dx r(y)
Image3295 d s(y)ćy jf(xy)dx. c r(y)
Image3022 df d ,1 /n „ - = —(-(2x-y)) = dX dX Z ytz traktujemy jako stale = —■ 2 = — Z z
Image3029 gratf = grad 1(2,5)(d[_ df) dx! dy xcos-yx2+y cosJx2 + y 9 xć +y ‘ 2-jx2 +y , a stąd ma my
Image3092 3F 3F du dv = df df dx1 dy dx dx du dv dy dy du dv 2e2xcosyJ-e2xsiny 2 u -
Image3097 df _ 1 1 ^arctg^ dX yi + {Ł)2 1 Y X ^arctg* 0 9 ® J y ^arctg* 3f _ X f ^arctg* X2 + y2 e
Image3117 ĆF df dx df dy x x3 ? - =--+--?-=QX+QX -3x dx dx dx dy dx
Image3244 ŹL dx2—f—1 dx I dx I = 2X"V2
Image3284 q(x) A(x)= ff(xt y)ćy P(X)
Image3287 śy) B(y)= f(x,y)dx , ye[c,d] r(y}
Image3291 b q(x) jćx jf(x,y)ćy . a p(x)
Image3298 śy) B(y)= f f(xty)dx r(y}
Image3306 / 1 V 1 V jdy J(2x-y + 1)dx = J J(2x-y + o y2    o[y2 y yz + y° ą. _ 1
Image3446 dF dF ’df‘ 1 3un ć x_ dX dX dUj 1    1 dUn
Image3451 badźgradF = df dx. ■ grad* .
image3 dAV dt ~dx maxąl? ,diB: •Vx — AT + /B/g3

więcej podobnych podstron