International Tables for Crystaliography (2008). Vol. A, Space group 11, pp, 164-167.
No. 11 P\2y/m\ Patterson symmetry P12/m 1
UNIQUE AXIS b
Origin at I on 2,
Asymmetric unit 0 < x < 1; 0 < y < *; 0 < z < 1 Symmetry operations
(1) 1 (2) 2(0,5,0) 0,y,0 (3) I 0,0,0 (4) m xĄ,z
Generatora selected (1); *(1,0,0); *(0,1,0); *(0,0,1); (2); (3)
Positions Multiplicity, Wyckoff letter, Site symmetry |
Coordinates | |
4 / 1 |
(I)W |
(2)J,y + i? (3)x,y,l, |
2 e m |
x,j,z |
X,3,Ź |
2 ! |
ł,o, i | |
2 c ! |
0,0, i |
0,5,3 |
2 b I |
*,0,0 |
3,3,0 |
2 o 1 |
0,0,0 |
0,3,0 |
Symmetry of special projections | ||
Along [001] p2gm a' = a. b' = b Origin atO, 0 ,z |
Along [100] p2mg a' = b b' = c Origin atx,0,0 |
CONTINUED
Refiection conditions General:
(4) x,y + {,z 0&0: k = 2n
Special: as above, plus no extra conditions hkl : k = 2n hkl : k=2n hkl : k = 2n hkl : k — 2n
Along [010] p2 a' = c b' = a Origin at 0,y,0
Maximal non-isomorphic subgroups
I |
[2] P1 m 1 (Pm, 6) |
1; 4 |
[2]P12,\(P2l,4) |
i; 2 | |
[2]Pi (2) |
1; 3 | |
Ha |
nonę | |
II b |
[2]PI2,/cl (c1 = 2c)(P2,/c, 14); [2]P12,/cl (a' = 2a)(P21/c, 14); [2]S12,/el (a’= 2a,c'= 2c)(P2,/c, 14) |
Maximal isomorphic subgroups of lowest index
Dc [2] P12,/m 1 (c* = 2c or a' = 2a or a' = a + c, t~-a + c) (P2Jm, 11); [3] P12,/m 1 (b' = 3b) (P2,/m, 11)
Minimal non-isomorphic supergroups
I [2] Pmma (51); [2] Pbcm (57); [2] Pmmn (59); [2} Pnma (62); [2]Cmcm (63); [3] P6}/m (176)
II [2] C12/m 1 (C2/m, 12); [2] A12/m 1 (C2/m, 12); [2] /12/mI (C2/m, 12); [2]PI 2/ml (b' = |b) (P2/m, 10)
165