International Tables for Crystallography (2006). Voł. A, Space group 28, pp. 224-225.
Pma 2
Patterson symmetry Pmmm
Pma2
♦— 1 |
—♦— i |
—♦ |
1 i £ ? |
i ♦ i |
1 ♦ i |
1 ♦— |
1 —♦— |
I —t |
n |
PI cm f |
f |
£ j : : i i i i | ||
i |
1 |
I |
r
*o |
*o | |
o* | ||
o* | ||
-o |
*0 | |
♦o |
*o |
Origin on lo2
Asymmetric unit 0 <* < J; 0 < y < 1; 0 < z < 1 Symmetry operations
(1) 1 (2) 2 0,0,z (3) a x,0,z (4) m ),y,z
CONTINUED
Pma 2
Generators selected (1); f(l,0,0); /(0,1-0); /(0,0,1); (2); (3) Positions
Multiplicity, Coordinates
Wyckoff letter,
Site symmetry
Reflection conditions General:
4 |
d 1 |
(D*,y,z |
(2) x,y,z |
(3) \,y,z |
(4)x+j,y,z |
hOl : h = 2n A00: h = 2n |
Special: as above, plus | ||||||
2 |
c m.. |
19,* |
no extra conditions | |||
2 |
b ..2 |
0,i ,z |
5,Z |
hkl : h = 2n | ||
2 |
a ..2 |
0,0, Z |
j,0, Z |
hkl : h = 2n |
Along [001] plmg a = a b = b
Origin at 0,0, z
Along [100] p Im 1 a' = b b' = c Origin at x, 0,0
Along jOlO] pllm a' = c b' = |a Origin at0,y,0
Symmetry of special projections
Maximal non-isomorphic subgroups
[2j Pm 11 (Pm, 6) 1; 4
Ila nonę
Ilb [2] Pba2(b' = 2b) (32); [2] Pmn2, (c = 2c) (31); [2] Pcn2 (c1 = 2c) (Pnc2,30); [2]Pca2, (c* = 2c) (29); [2) Aea2(b' = 2b,ć = 2c) (41); [2]Ama2 (b' = 2b,c' = 2c) (40)
Maximal isomorphic subgroups of lowest index
Dc [2] Pma 2 (b' = 2b) (28); [2] Pm a 2 (ć = 2c) (28); [3] Pma2 (a' = 3a) (28)
Minimal non-isomorphic supergroups
I [2]Pccm(49); [2JPmma(51); [2]Pmna(53); [2]Pbcm(57)
II [2] Cmm2 (35); [2] Bme2 (Aem2, 39); [2] Ama2 (40); [2] lma2 (46); [2] Pmm2 (a' = ?a)(25)
225