61
60
Kula (1) jest zawieszona na stalowym drucie (2), który jest wlutowany osiowo w walec (3), mogący obracać się w łożysku za pośrednictwem pokrętła (4) o niewielki kąt. Wiązka światła z rzutnika (5) odbija się od zwierciadełka (6), przymocowanego do drutu i daje na skali (7) plamkę świetlną. Podczas drgań obrotowych kuli, plamka świetlna wykonuje drgania liniowe o wychyleniu x,
X
związanym z kątem obrotu ę równością y = tg 2xp (l jest odległością skali od
zwierciadełka). Dla niewielkich kątów: tg2ę = 2ę. Stąd x = 2lę, czyli wychylenie jest proporcjonalne do kąta obrotu kuli.
Tłumienie stałym co do wartości momentem siły uzyskujemy podstawiając pod kulę cienką blaszkę przesuwaną na statywie. Nacisk blaszki na kulę można regulować za pomocą śruby. Tłumienie momentem proporcjonalnym do prędkości kątowej realizujemy przez zanurzenie kuli w cieczy, np. w wodzie.
Tłumienie pochodzące od lepkości powietrza i tarcia wewnętrznego w materiale drutu jest tak małe, że można je wobec obu rozpatrywanych tłumień pominąć.
Kulę wprawiamy w drgania przez powolny obrót pokrętła z położenia zerowego w skrajne, a następnie dosyć szybki powrót do położenia zerowego.
3. Wykonanie pomiarów i opracowanie wyników Zadanie 1
Badanie drgań obrotowych kuli „nie tłumionych” ( z pominięciem tłumienia powietrza i materiału drutu)
1. Zmierzyć okres drgań poprzez kilkakrotny pomiar czasu przypadającego na dziesięć okresów 1071 Wyniki pomiarów zapisać w tabeli 1.
2. Zmierzyć kilkanaście kolejnych maksymalnych wychyleń xn po tej samej stronie położenia równowagi. Wychylenia mierzymy w działkach skali (oznaczenie: dz). Wyniki zapisać w tabeli 2.
3. Sporządzić wykres zależności „amplitudy” od czasu.
4. Obliczyć moment bezwładności kuli: I = ^mR2, a następnie na podstawie wzoru (5) obliczyć moment kierujący ki. Masa kuli m oraz jej promień R są podane w instmkcji do ćwiczenia znajdującej się w laboratorium.
Zadanie 2
Badanie drgań obrotowych kuli tłumionych tarciem kulombowskim.
1. Zmierzyć około dziesięciu kolejnych maksymalnych wychyleń xn w tę samą stronę. Wyniki zapisać w tabeli analogicznej do tabeli 2.
2. Sporządzić wykres przedstawiający zależność „amplitudy” od czasu.
Tabela 1
Lp. |
i |
lor | |
ior[s] |
Tabela 2
Lp. |
1 | |
xn [dz] |