I IK
gdzie <pn - współczynnik zależny od geometrii i emisyjności układu.
Wymiana ciepła przez promieniowanie odgrywa kluczową rolę w układzie Ziemia - Słońce. W naszym doświadczeniu straty ciepła odbiornika poprzez promieniowanie możemy zaniedbać. Przy różnicach temperatur rzędu 40 K, w przedziale temperatur 273 - 373 K i przy emisyjności rzędu 0,04 (dla Cu) jest ona do pominięcia w porównaniu z ilością ciepła wymienianą przez przewodzenie i konwekcję.
1.2. Stygnięcie i ogrzewanie się ciał przez konwekcję
Rozważmy dla uproszczenia, że mamy tylko do czynienia z procesem nlygnięcia ciała (proces odwrotny - ogrzewania - będzie przebiegał analogicznie) oraz że ciepło oddawane jest tylko przez konwekcję. Proces ten zachodzi dwuetapowo. Chłodny gaz (ciecz) otaczający ciało o wyższej temperaturze ogrzewa się przy jego powierzchni, staje się rzadszy i odpływa do góry, a na jego miejsce napływa nowa porcja chłodnego (gęstszego) gazu.
d20
Gęstość strumienia cieplnego q = —— przepływającego pomiędzy sty-
dS dr
gnącym ciałem a gazem (cieczą) podaje prawo Newtona-.
q = ak{T-T2), (4.1)
gdzie: T jest temperaturą ciała, Ti - stałą temperaturą otaczającego gazu (cieczy), a/ę - współczynnikiem przejmowania ciepła.
Energia odpływająca z ciała o powierzchni S zgodnie z prawem Newtona (5) po czasie dr musi być równa ciepłu, które oddało ciało ochładzając się o
(4.2)
Sak(T-T2)dr =-cm<XT ,
gdzie: m to masa ciała, c - jego ciepło właściwe.
Po rozdzieleniu zmiennych w równaniu (4.2) dostajemy:
T-T2
dT
cm
(4.3)
Całkowanie równania (4.3) przy założeniu, że w chwili r = 0 temperatura ciała wynosiła Tę>\
rj T-T2 0J cm
daje:
ln(r-Tt) = ln(r0 -T2)~ — t , (4.4)
cm
Ze wzoru (4.4) możemy obliczyć zależność różnicy temperatur AT stygnącego ciała T i otoczenia Ti od czasu r:
(4.5)
T(t)~T2=(T0 -r2)e
a następnie zapisać go w postaci (7).
Ze wzorów (4.5) i (7) widać, że różnica temperatur między stygnącym ciałem i otoczeniem, zanika wykładniczo do zera, a stała czasowa procesu, cecha charakterystyczną układu, wynosi:
cm
4.3. Przewodnictwo cieplne złych przewodników ciepła
Płasko-równoległą płytkę materiału, którego przewodnictwo cieplne chcemy zbadać, umieszczamy między źródłem ciepła - grzejnikiem a odbiornikiem (rys.4). Rejestrujemy zmiany różnicy temperatur pomiędzy grzejnikiem o bardzo dużej pojemności cieplnej i stabilizowanej temperaturze T\ = const a odbiornikiem, będącym bardzo dobrym przewodnikiem ciepła. Szybkość akumu-lowania ciepła przez odbiornik:
dT
dr
(4.6)
będzie równa szybkości przepływu ciepła przez opór cieplny Rc badanego układu, na który składają się: opór cieplny materiału Rk dany wzorem (4) oraz dwa opory stykowe R$\ i Rsi (rys.4). Korzystając z równania (2) i przyjmując, że opór cieplny: Rc- Rk+ Rsi + Rsi, można napisać równanie: